Heat Exchanger Tubing: Extending the Reach of IRIS Inspections

Presenter: Olivier Lavoie

Olivier Lavoie

Tubing Products Manager Eddyfi Technologies

Over 15 years of experience in the NDT industry (R/D Tech, Zetec and Eddyfi)

Now, in charge of tubing probes and instruments for the: Oil & Gas, Nuclear, BoP, HVAC/Chiller markets

Content

- 1. IRIS for Heat Exchanger Inspection
- 2. .500" .750" IRIS Solution / Field-Testing Results
- 3. 3.0" 6.5" IRIS solution / Field-Testing Results
- 4. Custom bended tube application / Field-Testing Results
- 5. Pull-speed comparison
- 6. Conclusion

IRIS for Heat Exchanger Inspection

- + Work for both ferrous and non-ferrous material
- + Versatile
- + Reliable and precise technology
- + Validation technique
- Obstacles (such as small tubes, low inspection speed, etc.)

Manifold

Typical heat exchanger tube unit

.500"-.750" Current IRIS Solution

Common plastic tulip centering device

Very good, but they burn fast!

- Good less expensive solution
- Often limited with internal scaling, old bended tube and at tubesheet

.500"-.750" New IRIS Solution

Spring-loaded arms

- More durable
- Better data results with optimal centering
- Drastically less affected by scaling, old bended tube and at tubesheet
- Compatible with both turbines .335 in (8.5 mm) and 0.472 in (12 mm)

Extra-small centering device from 0.370–0.730 in (9.4–18.5 mm)

.500"-.750" New IRIS Solution

Selection table

,	Tube wall thickness (BWG, mm, in)										
Tube OD	4 6.05 0.238	6 5.16 0.206	8 4.19 0.165	10 3.4 0.135	12 2.77 0.109	14 2.11 0.083	16 1.65 0.065	18 1.24 0.049	20 0.89 0.035		
12.7 mm (.500 in)	-	-	-	-	-	-	CDXS-SLA TB-085 MTD-20M-191	CDXS-SLA TB-085 MTD-20M-191	-		
15.87 mm (.625 in)	-	-	-	-	CDXS-SLA TB-085 MTD-20M-191	CDXS-SLA TB-085 MTD-20M-191	CDXS-SLA TB-120 TD-20M-254	CDXS-SLA TB-120 TD-20M-254	CDXS-SLA TB-120 TD-20M-254		
19.05 mm (.750 in)	-	-	-	-	CDXS-SLA TB-120 TD-15M-254	CDXS-SLA TB-120 TD-15M-254	CDXS-SLA TB-120 TD-20M-254	CDXS-SLA TB-120 TD-20M-254	CDXS-SLA TB-120 TD-20M-254		
22.22 mm (.875 in)	-	-	CDXS-SLA TB-120 TD-10M-254	CDXS-SLA TB-120 TD-15M-254	CDXS-SLA TB-120 TD-15M-254	CDXS-SLA TB-120 TD-15M-254	CDXS-SLA TB-120 TD-20M-254	CDXS-SLA TB-120 TD-20M-254	-		
25.4 mm (1.0 in)	CDXS-SLA TB-120 TD-10M-254	CDXS-SLA TB-120 TD-10M-254	CDXS-SLA TB-120 TD-10M-254	CDXS-SLA TB-120 TD-15M-254	CDSM-SLA TB-170 TD-15M-318	CDSM-SLA TB-170 TD-15M-318	CDSM-SLA TB-170 TD-20M-318	CDSM-SLA TB-170 TD-20M-318	-		

.500"-.750" New IRIS Solution

Selection table

	Tube wall thickness (BWG, mm, in)										
Tube OD	4 6.05 0.238	6 5.16 0.206	8 4.19 0.165	10 3.4 0.135	12 2.77 0.109	14 2.11 0.083	16 1.65 0.065	18 1.24 0.049	20 0.89 0.035		
12.7 mm (.500 in)	-	-	-	-			CDXS-SLA TB-085 MTD-20M-191	CDXS-SLA TB-085 MTD-20M-191	-		
15.87 mm (.625 in)	-	-	-	-	CDXS-SLA TB-085 MTD-20M-191	CDXS-SLA TB-085 MTD-20M-191	CDXS-SLA TB-120 TD-20M-254	CDXS-SLA TB-120 TD-20M-254	CDXS-SLA TB-120 TD-20M-254		
19.05 mm (.750 in)	-	-	-	-	CDXS-SLA TB-120 TD-15M-254	CDXS-SLA TB-120 TD-15M-254	CDXS-SLA TB-120 TD-20M-254	CDXS-SLA TB-120 TD-20M-254	CDXS-SLA TB-120 TD-20M-254		
22.22 mm (.875 in)	-	-	CDXS-SLA TB-120 TD-10M-254	CDXS-SLA TB-120 TD-15M-254	CDXS-SLA TB-120 TD-15M-254	CDXS-SLA TB-120 TD-15M-254	CDXS-SLA TB-120 TD-20M-254	CDXS-SLA TB-120 TD-20M-254	-		
25.4 mm (1.0 in)	CDXS-SLA TB-120 TD-10M-254	CDXS-SLA TB-120 TD-10M-254	CDXS-SLA TB-120 TD-10M-254	CDXS-SLA TB-120 TD-15M-254	CDSM-SLA TB-170 TD-15M-318	CDSM-SLA TB-170 TD-15M-318	CDSM-SLA TB-170 TD-20M-318	CDSM-SLA TB-170 TD-20M-318	-		

316 Stainless Steel 0.500 x 0.065 in

304 Stainless Steel 0.625 × 0.103 in

3.0"- 6.5" IRIS solution

Extra-Large Spring-loaded arms centering device

Cover a large diameter range from 2.8 – 6.6 in

Robust and easily adjustable mechanical design

Smooth inspection, even with internal scaling /

welds / deposits

High quality data

3.0"- 6.5" IRIS solution

Extended IRIS selection table

DIMENSIONS			UT TRANSDUCER					DECOM	VENDED O	DEED	TYPICAL MINIMUM					
	DIIVILIASIONS					10 MHz			15 MHz			RECOMMENDED SPEED			FLAW DETECTION *	
OUT	OUTSIDE WALL			63.50 mm	76.20 mm	88.90 mm	63.50 mm	76.20 mm	88.90 mm	ROTATION	PUL	LING	mm	in		
DIAM	IETER		THICKNESS		(2.500 in)	(3.000 in)	(3.500 in)	(2.500 in)	(3.000 in)	(3.500 in)	RPS	mm/s	in/s	111111	in	
	2 F in	SCH 10	3.05 mm	(0.120 in)				Χ			83	50.8	2	4.3	0.169	
88.90 mm	3.5 in (ND 3.0 in)	SCH 40	5.49 mm	(0.216 in)	Χ						55	50.8	2	4.0	0.157	
	(ווו ט.ט טוו)	SCH 80	7.62 mm	(0.300 in)	Χ						57	53.34	2.1	3.8	0.150	
	4.0 in	SCH 10	3.05 mm	(0.120 in)				Х			48	45.72	1.8	5.0	0.197	
101.60 mm	(ND 3.5 in)	SCH 40	5.74 mm	(0.226 in)	Χ						50	45.72	4 2.1 3.8 2 1.8 5.0 2 1.8 4.7 6 1.9 4.4 4 1.6 5.6 8 1.7 5.3	0.185		
	(ווו כ.כ טאו)	SCH 80	8.08 mm	(0.318 in)	Χ						51	48.26	1.9	4.4	0.173	
	4.5 in	SCH 10	3.05 mm	(0.120 in)					Х		44	40.64	1.6	5.6	0.220	
114.30 mm	(ND 4.0 in)	SCH 40	6.02 mm	(0.237 in)		Χ					45	43.18	3.18 1.7 5.	5.3	0.209	
	(ND 4.0 III)	SCH 80	8.56 mm	(0.337 in)		Χ					47	43.18	1.7	5.0	0.197	
	5.563 in	SCH 10	3.40 mm	(0.134 in)						Χ	37	33.02		7.0	0.276	
140.61 mm	(ND 5.0 in)	SCH 40	6.55 mm	(0.258 in)			Χ				38	35.56	1.4	6.6	0.260	
	(ND 3.0 III)	SCH 80	9.53 mm	(0.375 in)			Χ				39	35.56	1.4	6.3	0.248	
168.28 mm	6.625 in	SCH 40	7.11 mm	(0.280 in)			Χ				33	30.48	1.2	8.0	0.315	
100.20 111111	(ND 6.0 in)	SCH 80	10.97 mm	(0.432 in)			Χ				34	30.48	1.2	mm 2	0.299	

ND means: pipe Nominal Diameter

^{*} Based on a circumferential detection of three points with a 180° resolution.

3.0"- 6.5" IRIS solution

Extended IRIS selection table

DIMENSIONS				UT TRANSDUCER						RECOMMENDED SPEED			TYPICAL MINIMUM		
DIIVIENSIONS					10 MHz				15 MHz		RECOMMENDED SPEED			FLAW DETECTION *	
OUTSIDE WALL			63.50 mm	76.20 mm	88.90 mm	63.50 mm	76.20 mm	88.90 mm	ROTATION	PULLING		mm	in		
DIAM	DIAMETER THICKNESS			(2.500 in)	(3.000 in)	(3.500 in)	(2.500 in)	(3.000 in)	(3.500 in)	RPS	mm/s	in/s	111111	111	
	3.5 in	SCH 10	3.05 mm	(0.120 in)				Х			83	50.8	2	4.3	0.169
88.90 mm	(ND 3.0 in)	SCH 40	5.49 mm	(0.216 in)	Χ						55	50.8	2	4.0	0.157
	(ווט 3.0 ווו)	SCH 80	7.62 mm	(0.300 in)	Χ						57	53.34	2.1	3.8	0.150
	4.0 in	SCH 10	3.05 mm	(0.120 in)				Х			48	45.72	1.8	5.0	0.197
101.60 mm	(ND 3.5 in)	SCH 40	5.74 mm	(0.226 in)	Χ						50	45.72	1.8	4.7	0.185
	(111 5.5 (111)	SCH 80	8.08 mm	(0.318 in)	Χ						51	48.26	1.9	4.4	0.173
	4.5 in	SCH 10	3.05 mm	(0.120 in)					Χ		44	40.64	1.6	5.6	0.220
114.30 mm	4.5 In (ND 4.0 in)	SCH 40	6.02 mm	(0.237 in)		Χ					45	43.18	1.7	5.3	0.209
		SCH 80	8.56 mm	(0.337 in)		Χ					47	43.18	1.7	5.0	0.197
	5.563 in	SCH 10	3.40 mm	(0.134 in)						Χ	37	33.02	1.3	7.0	0.276
1 14() 61 mm l	(ND 5.0 in)	SCH 40	6.55 mm	(0.258 in)			Χ				38	35.56	1.4	6.6	0.260
	(111 5.0 111)	SCH 80	9.53 mm	(0.375 in)			Χ				39	35.56	1.4	6.3	0.248
168.28 mm	6.625 in	SCH 40	7.11 mm	(0.280 in)			Χ				33	30.48	1.2	8.0	0.315
100.26 111111	(ND 6.0 in)	SCH 80	10.97 mm	(0.432 in)			Χ				34	30.48	1.2	7.6	0.299

ND means: pipe Nominal Diameter

 $[\]ensuremath{^*}$ Based on a circumferential detection of three points with a 180° resolution.

Carbon steel 6.0 in pipe sch. 80 (0.432 in – 10.97 mm)

IRIS measured wear scar 40.3% wall loss / 148° coverage

Custom bended tube application

Custom flexible IRIS

- Can manage aggressive bends and elbows
- Better coverage at bend areas with higher quality data
- Interchangeable centering devices offer large variety of possibility
- Foam-loaded balls help for centering and remain water
 at the probe head

Probe assembly

Foam-loaded balls

Custom bend tube application

Manifold bends example:

Carbon steel 1.25×0.332 in $(31.8 \times 8.4 \text{ mm})$

Pull speed comparison

Centering device	Reference	X-small	Flexible	X-large			
Tube OD	1.0 in	0.500 in	1.25 in	3.5 in	6.5 in		
	(25 mm)	(13 mm)	(32 mm)	(89 mm)	(165 mm)		
Pull speed	2.0 in/s	5.0 in/s	3.4 in/s	2.3 in/s	1.5 in/s		
	(51 mm/s)	(127 mm/s)	(86 mm/s)	(58 mm/s)	(38 mm/s)		

The reference pull speed is extrapolated from industry baselines.

Conclusion

- Small tubes and large pipes can now be fully inspected, including internal obstacles, thanks to a "collapsible design"
- Probes can go through <u>aggressive bends and elbows</u> with a <u>better coverage</u>, allowing complete asset integrity assessment
- Higher pull speed, reduce time, yielding better ROI and with improved IRIS technology offers higher quality data!

Questions?

Visit us at our booth for further discussion

Olivier Lavoie
Tubing Product Manager

olavoie@eddyfi.com

