Detection of Small Levels of Incremental Damage Using Likelihood Ratio Approach

Presenting Author:

Luc Chouinard

Authors: Vahid Shahsavari, Luc Chouinard, Josée Bastien

¹ Department of Civil Engineering and Water Engineering, Université Laval, Quebec, Canada ² Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Canada

How can the efficiency of damage detection techniques be improved for small levels of damage on bridge structures?

Outline

Motivation

- Structural Health Monitoring (SHM)
- Problem statement
- Challenges of the research
- Objective and hypothesis

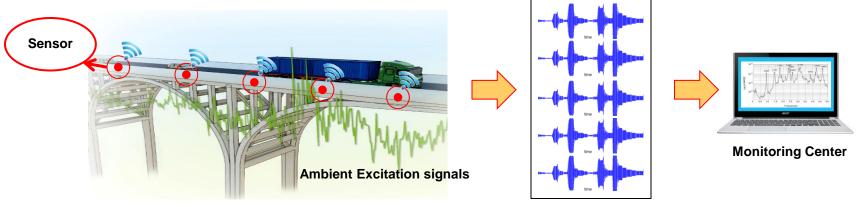
Methodology and results

- Principal Components Analysis (PCA)
- Statistical tests based on location parameters
- Likelihood Ratio (LR) test
- Conclusion

Introduction to SHM

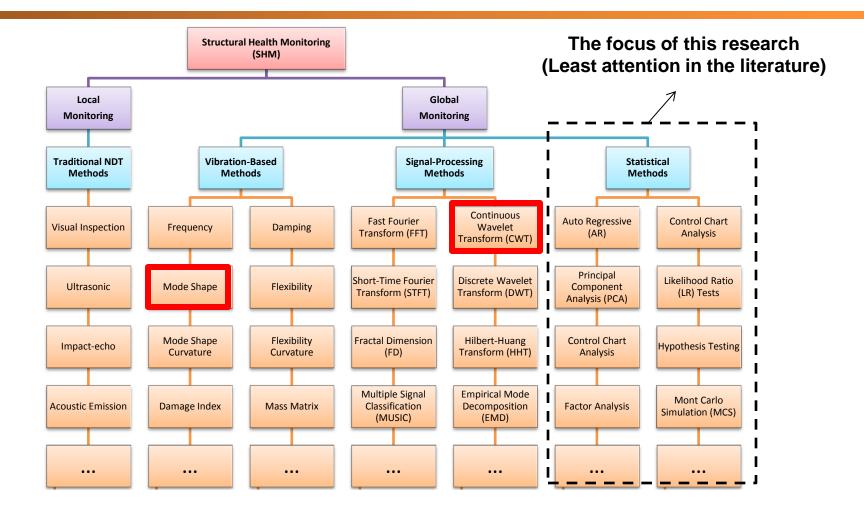
Local monitoring

- Depends on the accessible portion of inspection
- Requires large amount of human intervention
- Costly to continuously monitor specific structures
- Needs prior knowledge about approximate location of damage



Inspection of a steel girder by visual inspection study

Introduction to SHM

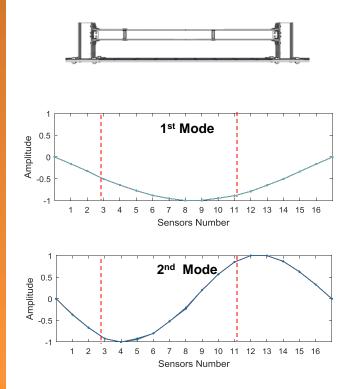

Global monitoring

Remote monitoring of a bridge using ambient excitations

- Measure global parameters of structure at a few easily points.
- Remotely monitor the structure with almost no human intervention (e.g. use of ambient excitations, traffic loads, etc)
 Able to identify actual location of existing damage when one does not have initial information as to the location of damage

Global Classification of SHM

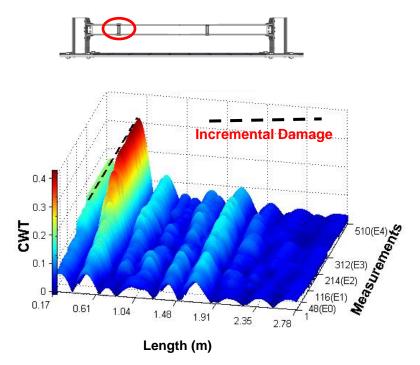
université


6

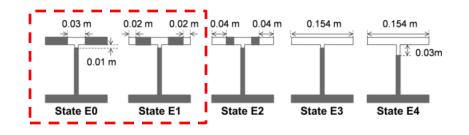
Problem Statement

Modal Analysis

Mode Shape


- A common type of global parameters
- Associated with mass and stiffness of a structure
- An indicator of damage location due to induced modifications in mass and stiffness
- Does not exhibit local changes due to small increments of damage

Problem Statement


Signal Processing

Continuous Wavelet Transform (CWT)

$$CWT_{f(s,u)} = \frac{1}{\sqrt{|s|}} \int_{-\infty}^{+\infty} f(x) \psi^* \left(\frac{x-u}{s}\right) dx$$

Scale Position Signal Mother wavelet

- Able to detect abrupt changes, breakdown points and oscillations in signals
- Unable to clearly detect induced defects at small levels of damage

Issues to address?

- Detect incremental damage at small levels of damage which is challenging given a high noise to signal ratio
- Summarize wavelet coefficients with a few new variables that explain most of the variability
- Filter-out noise in the wavelet coefficients
- Identify patterns associated with damage:
 - Damage detection
 - Damage localization

Hypothesis

The development of statistical pattern recognition techniques will exhibit dominant patterns of variations of the wavelet coefficients caused by small increments of damage

Methodology

Principal Component Analysis - PCA

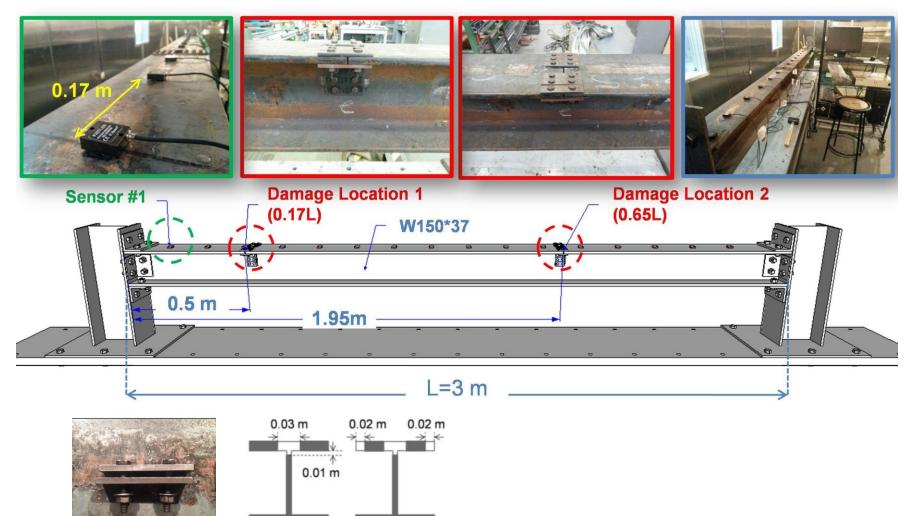
Based on singular value decomposition of a centered sample data (wavelet coefficients in this case)

Applications

Contribution

---> Hypothesis Testing ---> Likelihood Test

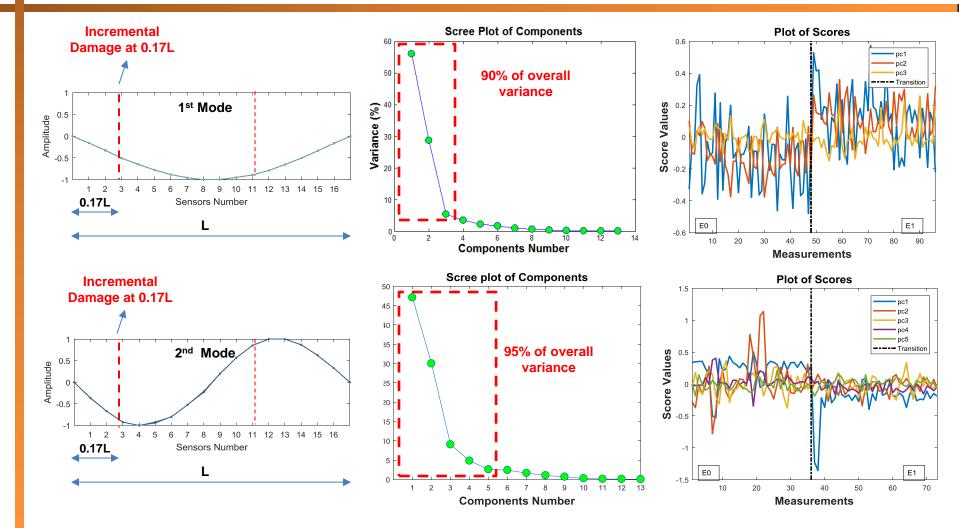
Data reduction and feature extraction


Data normalization

•Replace wavelet coefficients with a few new variables highly correlated with damage

•Filter-out noise in the wavelet coefficients

Methodology: Test Object



State E0

State E1

Methodology:

PCA

NDT in Canada 2017 Conference (June 6-8, 2017)

RIB

Methodology: PCA

NDT in Canada 2017 Conference (June 6-8, 2017)

14

RIB

Montgomery, D.C. and G.C. Runger, Applied Statistics and Probability for Engineers. 4th ed. 2012: John Wiley & Sons.

The results of the t-test between two scores at levels E0 and E1.

Mode #	Damage	PC	X E0	X E1	σ_{E0}	σ_{E1}	ГĦ	P-value	N _{E0}	N _{E1}	DOF	α
1 0		1	-0.11485	0.114849	0.212815	0.198508	1	3.73E-07	48	48	94	1%
	0.17L	2	-0.11753	0.117534	0.123097	0.117344	1	1.46E-15	48	48	94	1%
		3	0.005847	-0.00585	0.054775	0.087459	0	0.434343	48	48	94	1%
2	0.17L	1	0.234413	-0.22808	0.215917	0.288431	1	3.79E-11	36	37	71	1%
		2	0.038126	-0.0371	0.370449	0.116593	0	0.242584	36	37	71	1%
		3	0.012784	-0.01244	0.174712	0.124488	0	0.47677	36	37	71	1%
		4	0.051724	-0.05033	0.122914	0.065236	1	2.98E-05	36	37	71	1%
		5	-0.01966	0.019133	0.085077	0.070989	1	0.038474	36	37	71	1%
1	0.65L	1	0.066822	-0.07128	0.084352	0.107775	1	9.67E-10	48	45	91	1%
		2	-0.05863	0.062544	0.087387	0.060759	1	1.48E-11	48	45	91	1%
		3	0.004739	-0.00506	0.041973	0.067686	0	4.12E-01	48	45	91	1%
		4	0.001335	-0.00142	0.05205	0.06031	0	0.816891	48	45	91	1%
2	0.65L	1	-0.24268	0.298686	0.240163	0.190874	1	7.79E-20	48	39	85	1%
		2	-0.00565	0.006954	0.351788	0.163776	0	0.839901	48	39	85	1%
		3	0.046675	-0.05745	0.209578	0.19275	1	0.024597	48	39	85	1%
		4	0.057938	-0.07131	0.246667	0.108193	1	0.003441	48	39	85	1%
		5	0.035172	-0.04329	0.187828	0.149667	1	0.04414	48	39	85	1%
		6	-0.01342	0.016522	0.171647	0.082057	0	0.328664	48	39	85	1%

Principal Component Analysis - PCA ----> Hypothesis Testing ---> Likelihood Test

Methodology:

Based on the equality of the location parameters (e.g. mean) between two sets of random variables

If $H=1 \rightarrow$ significant evidence to accept the existence of damage \rightarrow Damage

If $H=0 \rightarrow$ significant evidence to reject the existence of damage \rightarrow No damage

Statistical Detection of Damage

Methodology: Statistical Detection of Damage

Likelihood

Principal Component Analysis - PCA

Hypothesis Testing

U-test

An alternative method to test the equality of location parameters when the results of the t-test are questionable or data sets are not normally distributed.

The results of the U-test between two scores at levels E0 and E1.											
Mode #	Damage	I PC	R _{E0}	R_{E1}	σ_{E0}	σ_{E1}	_ F F]	P-value	N _{E0}	N _{E1}	α
1	0.17L	1	-4.4955	1714	2942	538	1	6.94E-06	48	48	1%
		2	-6.91362	1384	3272	208	1	4.72E-12	48	48	1%
		3	2.575662	2680	1976	800		0.010005	48	48	1%
2	0.17L	1	6.405085	1913	788	85	1	1.50E-10	36	37	1%
		2	0.082753	1340	1361	658	0	0.934048	36	37	1%
		3	0.777878	1403	1298	595	0	0.436641	36	37	1%
		4	4.750024	1763	938	235	1	2.03E-06	36	37	1%
		5	-2.57638	1098	1603	432	1	0.009984	36	37	1%
1	0.65L	1	5.377588	2956	1415	380	1	7.55E-08	48	45	1%
		2	-6.03874	1470	2901	294	1	1.55E-09	48	45	1%
		3	2.048788	2523	1848	813		4.05E-02	48	45	1%
		4	0.618865	2337	2034	999	0	0.536006	48	45	1%
2	0.65L	1	-7.19915	1268	2560	92	1	6.06E-13	48	39	1%
		2	-1.48933	1937	1891	761	0	0.1364	48	39	1%
		3	1.839262	2328	1500	720	1	0.065877	48	39	1%
		4	2.334284	2386	1442	662	1	0.019581	48	39	1%
		5	1.301566	2265	1563	783		0.193065	48	39	1%
		6	-1.77952	1903	1925	727	1	0.075155	48	39	1%

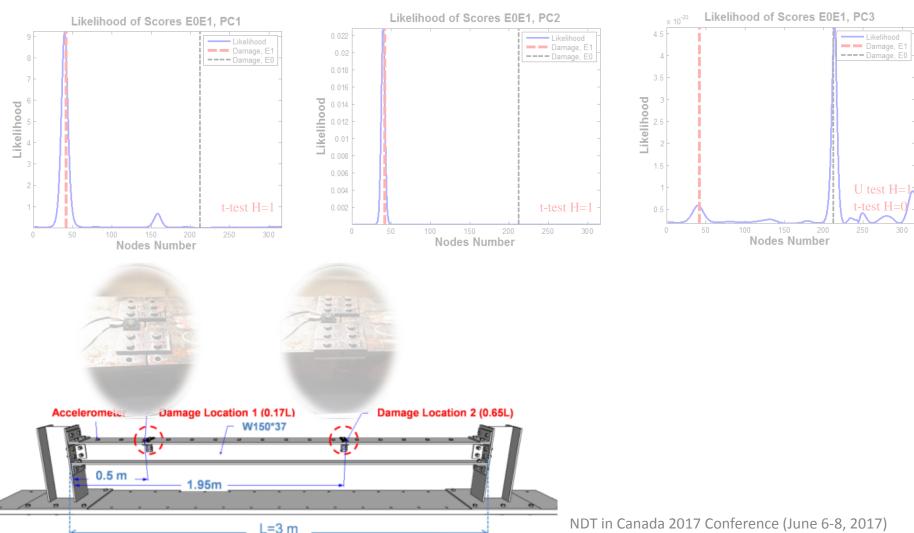
The regults of the U test between two seeres at levels EA and E1

NDT in Canada 2017 Conference (June 6-8, 2017)

Montgomery, D.C. and G.C. Runger, Applied Statistics and Probability for Engineers. 4th ed. 2012: John Wiley & Sons.

Methodology: Localization of Damage

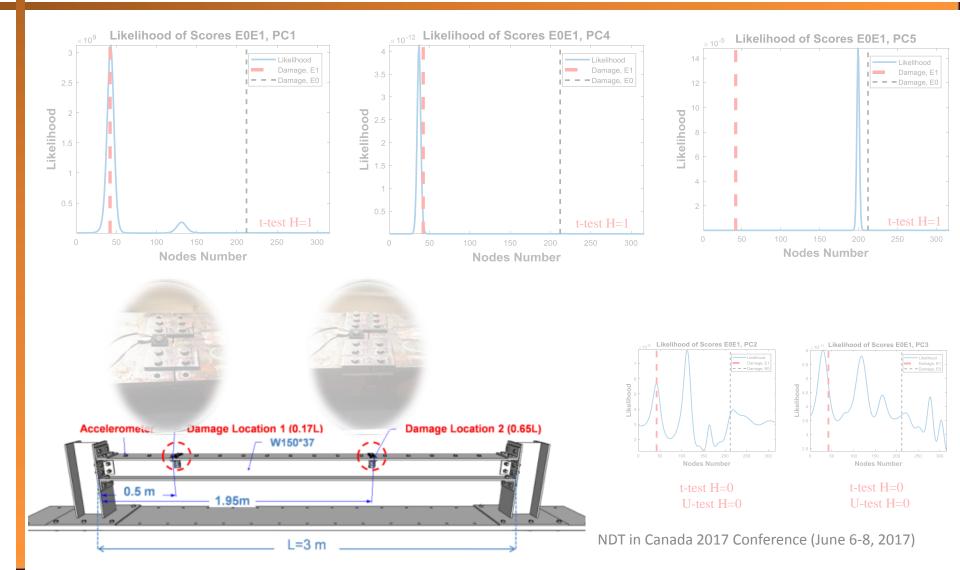
Principal Component Analysis - PCA ----> Hypothesis Testing ---> Likelihood Test


Likelihood test is developed based on an adaptation of the Likelihood Ratio (LR) test

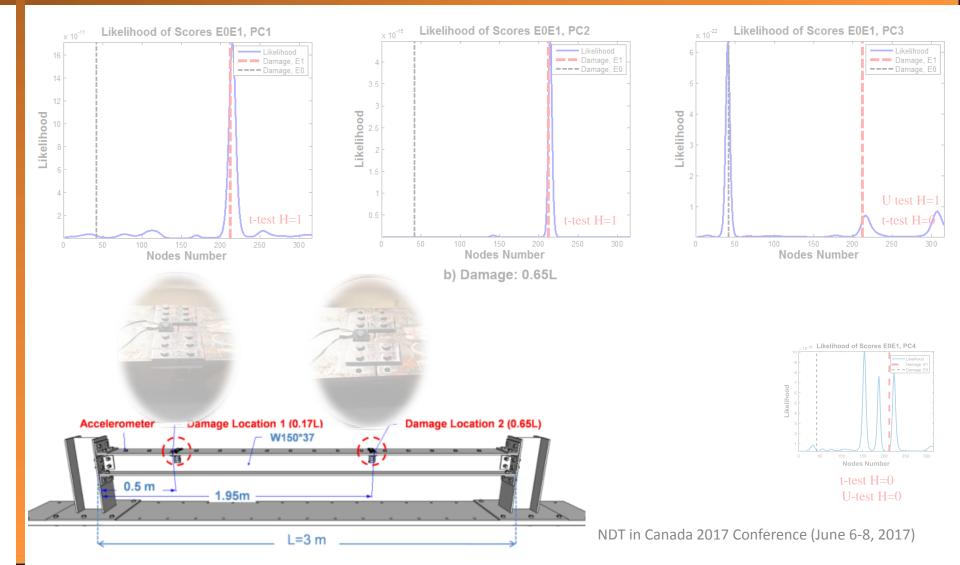
 $LR(i) = \frac{L(S_R \mid \mu_R, \sigma_R)}{L(S_i \mid \mu_i, \sigma_i)} \longrightarrow \text{Reference model}$ Alternative model

Sampling node

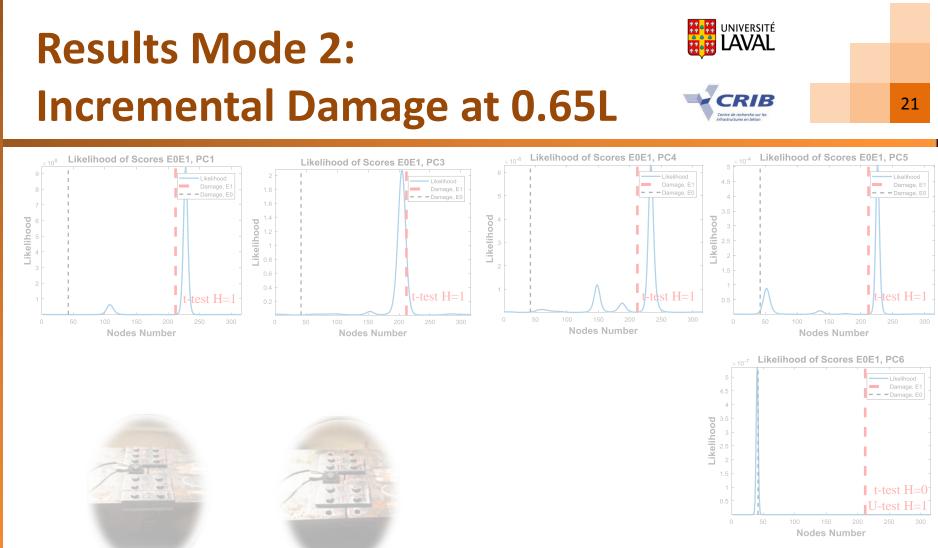
Since the model with the removed node (alternative model) that is closest to the damage is expected to be least informative (or likely) in comparison to the full model, the LR achieves its maximum value which is identified as the likely location of damage.


Results Mode 1: Incremental Damage at 0.17L

18


RIB

Results Mode 2: Incremental Damage at 0.17L




Results Mode 1: Incremental Damage at 0.65L

20

université

Likelihood of Scores EDE1, PC2

Conclusions

- UNIVERSITÉ LAVAL VIENCE de recherche lar les Les de recherche lar les Les de recherches lar les
- The potential of the CWT method for low levels of damage is not quite satisfactory on its own.
- The combined application of the PCA and the CWT method can improve the efficiency of damage detection and minimize false indications of damage.
- Likelihood test results corresponding to the first fundamental mode shape was found to be more consistent and accurate compared to the second mode.
- For the second mode shape the contribution of principal components (PC) at higher orders was shown to be important for damage detection.
- Statistical detection of damage was demonstrated for low levels of damage.
- Further validations are necessary for other types of structures and real field tests.

Acknowledgements

Funding

NFRA, CREATE grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Research Center on Concrete Infrastructure (CRIB)

Natural Sciences and Engineering Research Council of Canada (**NSERC**)

