Machine Learning in Pipeline Inspection

Applications of supervised learning in non-destructive evaluation

Authors: Roberto H. HERRERA, Paul CHRISTENSEN, Adrianus ELVERS UT Quality Inc. a RAE Energy Company; Edmonton, Canada

Machine Learning in Pipeline Inspection

- Supervised Learning
- Automatic Flaw Type Classification.
- Automatic Acceptance Criteria using Artificial Intelligence.

What is Machine Learning?

- Machine learning is a field of Artificial Intelligence that uses statistical techniques to give computer systems the ability to "learn"
- Machine Learning is the science of getting computers to learn as well as humans do or better.

ARTIFICIAL INTELLIGENCE

Programs with the ability to learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn without being explicitly programmed

DEEP LEARNING

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data

https://www.argility.com/argility-ecosystem-solutions/iot/machine-learning-deep-learning/

Data everywhere

 Machine learning algorithms find natural patterns in data that generate insight and help you make better decisions and predictions.

Netflix

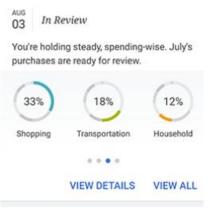


Amazon Kindle

Inspired by your browsing history See more

Some applications

- Web search
- Finance (Example RBC Canada)
- Space exploration
- Robotics
- Social Networks
- Autonomous cars
- Personal assistants (Google, Alexa, Siri)
- Non destructive Testing –
 (The value will be on the data)

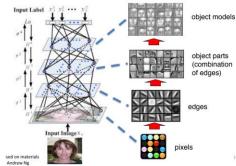


NOMI INSIGHTS

You can change the address, email and contact numbers we have on file for

Using predictive technology, NOMI Find & Save does all the work for you, so you can save money without lifting a finger

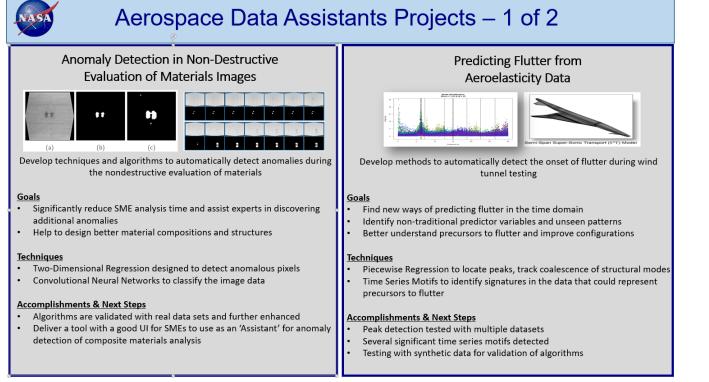
Deep Belief Net on Face Images



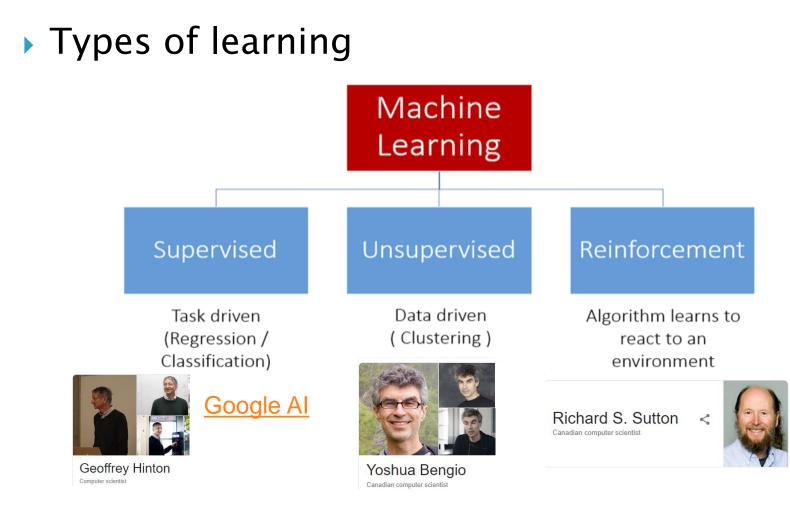
Some applications

NASA - Machine Learning

 Algorithms capable of learning from both data and human interaction to enable insights and make predictions



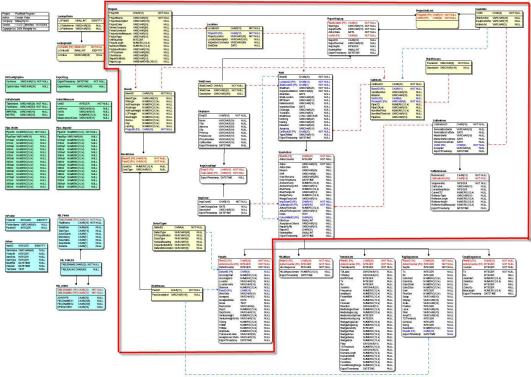
AIAA Conference - Big Data Session_ Final - Jan 2016



Pipeline inspection data:

UTQ Flaw Tracker

• The perfect case



Pipeline inspection data:

UT Flaw Tracker[®], filters the dataset to feed the proper data into the ML algorithm .

承 UTFlawTracker		- 🗆 X
Access Database	Daily Report Information Select Start Date Select End Date	Statistics, Graphics and Report
Select Database File Connect to the database	Pop-up Menu V	Process Data
Select Project Updates from database Select Location Updates from Projects	Rejectable Indications Acceptable Indications Select Pipe OD, WT, Cal Block Pop-up Menu Flaw Types	Number of Zones 10 ~ Stats in Graphs
Select Crew	General Notes - First page of the Report	Generate Final Report

Getting your data ready for Machine Learning

• The Flaw Tracker Report

WeldNum	Flaw	DefectCounter	Result	Class	Ident	Channel	WeldSide	Start	End	Length	Depth	Height	Wall Thickness	Scan Date Time
														2017-09-29
Weld_001	1	L í	Accepted	LB	IF	TOFD	N/A	274	278	4	11.2	1	19.1	22:16
Weld_002	1	. 2	2 Accepted	LB	IF	TOFD	N/A	234	238	4	8	1	19.1	2017-09-29 22:16
Weld	1	L	Accepted	LB	IF	TOFD	N/A	202	206	4	7.5	1	19.1	2017-09-29 22:16
	1		L Accepted	LB	IF	TOFD	N/A		158		15.2	1		2017-09-29
	1		2 Accepted			TOFD	N/A		183		15.2			2017-09-29
	1		Accepted			TOFD	N/A		202		15.7			2017-09-29
	1		Accepted			TOFD	N/A		252					2017-09-29
	1		Accepted		IF	TOFD	N/A		280					2017-09-29
	1	L	LAccepted	LB	IF	TOFD	N/A	522	526	4	10.5	1	19.1	2017-09-29 22:36
Weld_957	1		2 Accepted		IF	TOFD	N/A	172	176	4	16.8	1	19.1	2017-09-29 22:36

Getting your data ready for Machine Learning

Each indication has the following parameters:

- Operator's inputs (subjective)
 - WeldNum Fixed Input data
 - Flaw Software Flaw Tracker
 - DefectCounter Software Flaw Tracker
 - Result Operator's decision (Accept/Reject)
 - Class Operator's input (LB, VR, etc.)
 - Identification Operator's input (Flaw Type: Geometry, IF– incomplete fusion, Porosity, etc.)
- Direct results from the measurement system UT Scan (objective)
 - Channel UT Scan software
 - WeldSide UT Scan software
 - Start Operator's marked but the indication comes from the UT Scan
 - End Idem
 - Length Idem
 - Depth Idem
 - Height Idem
 - WallThickness Physical data
 - ScanDateTime Fixed data

How to apply Machine Learning to our data?

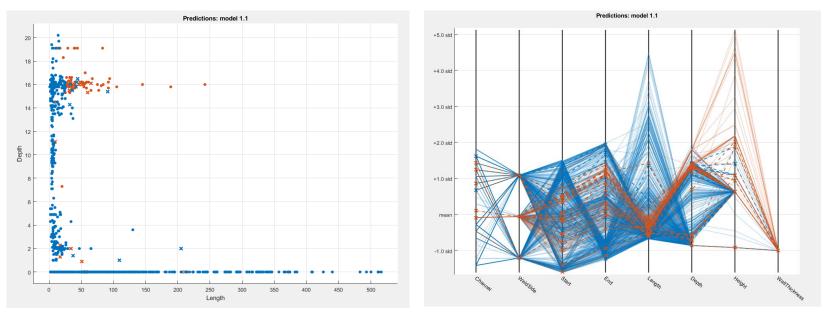
- We can "train" a computer to "learn" from the Physical Data (objective) to infer the classification of the indications
 - With the same accuracy as humans do or higher.

The task can be described as:

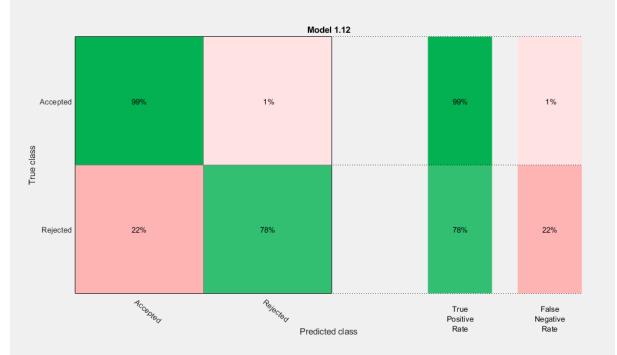
- Given the Measured Data from the UT Scan:
 - Channel UT Scan software
 - WeldSide UT Scan software
 - Start Operator's marked but the indication comes from the UT Scan
 - End Idem
 - Length Idem
 - Depth Idem
 - Height Idem
 - WallThickness Physical data
 - ScanDateTime Fixed data
- Classify the Flaw Types as: Geometry, Incomplete Fusion, Porosity, etc. and ...
- **BTW** let me know if I should Accept it or Reject it.
- Another condition is to be consistent and with an accuracy close to 100%.
 - Independently of your mood, the weather, your vision or any other physiological motivation.

Feed the Machine Learning algorithm with data.

- We have trained a Machine Learning algorithm in a dataset of
 - 766 Indications



Data conditioning The Confusion Matrix.



The algorithm "learned" to classify Accepted or Rejected indications with an accuracy of 97%

Processing new datasets

Once the Machine Learning algorithm produces a reasonable result, process the new dataset with the Trained Algorithm

- A database from a recent project (2018) was used as a testing dataset.
- We ran the trained model over the 657 indications in this new dataset,
- Hiding the labels and evaluation performed by the operators (flaw types and evaluation: accepted or rejected).

What is the accuracy? Are the results consistent?

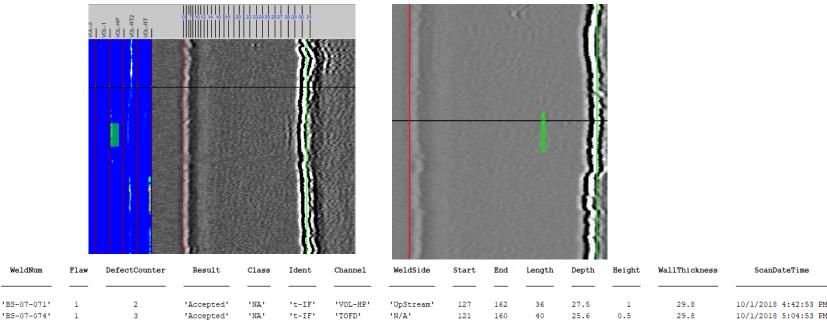
- From 657 Indications, the ML algorithm correctly classified 654 in Accepted or Rejected for an accuracy of 99.5%.
- Accuracy 99.5%.
- Only three indications were accepted that the algorithm thinks we should reject.

Note: After consultation with the specialist, these were close-calls. These indications were correctly classified by the operators but were so close to the acceptable limit that another operator could have had a different opinion.

WeldNum	Flaw	DefectCounter	Result	Class	Ident	Channel	WeldSide	Start	End	Length	Depth	Height	WallThickness	ScanDateTime
'BS-07-071'	1	2	'Accepted'	'NA'	't-IF'	'VOL-HP'	'UpStream'	127	162	36	27.5	1	29.8	10/1/2018 4:42:53 PM
'BS-07-074'	1	3	'Accepted'	'NA'	't-IF'	'TOFD'	'N/A'	121	160	40	25.6	0.5	29.8	10/1/2018 5:04:53 PM

From 657 indications 2 are not in agreement with the "ground data".

> Only two indications were accepted that the algorithm thinks we should reject:



• What about the flaw types? Multiple class classification.

- From 657 Indications the Algorithm correctly classified 641 with the correct Flaw Type
- Accuracy 97.6%.
- These are the misclassified Flaw Types
- Geo as IF and IF as Geo
- Actual Accuracy 99.7%

Operator	ML Algorithm
{'Geo'}	{'NC' }
{'Geo'}	{'NC' }
{'Geo'}	{'IF' }
{'Geo'}	{'NC' }
{'Geo'}	{'NC' }
{'Geo'}	{'NC'}
{'Geo'}	{'NC' }
{'Geo'}	{'NC'}
{'Geo'}	{'NC' }
{'IF' }	{'Geo' }

Results are in good agreement

ans =

657×2 <u>cell</u> array

See the Original and Estimated side by side

{'Geo'}	{'Geo'}
{'IF' }	{'IF' }
{'Geo'}	{'Geo'}
{'IF' }	{'IF' }
{'Geo'}	{'NC' }
{'Geo'}	{'Geo'}
{'IF' }	{'IF' }
{'IF' }	{'IF' }
{'Geo'}	{'Geo'}
{'IF' }	{'IF' }

Conclusions

How to integrate ML into current systems?

- Machine Learning will be a complement to the Flaw Type classification.
- Acceptance criteria could be validated by the AI algorithm.
- The Machine Learning functionality will be added to the current version of the UTQ Flaw Tracker as a validating method.

