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Abstract  
The large volume of data generated during pipeline inspection is usually reduced to key indicators while valuable 

information remains hidden in intricate relations and trends between these data. Machine Learning (ML) is a 

branch of Artificial Intelligence (AI) that helps to discover these hidden patterns. ML is becoming a ubiquitous 

tool in data science. It provides meaningful information beyond traditional statistical analysis. In this paper, we 

present an application of supervised learning, a method where the algorithm learns from previous classifications, 

and then independently performs classifications in new datasets. First, we use a training dataset from a known 

database with flaws classified by operators and validated by supervisors. Then, we apply the trained algorithm in 

new datasets from a large inspection database. Our method shows an accuracy above 97% in both flaw type and 

acceptance criteria classifications.  

 
Keywords: Machine learning, pipeline inspection, supervised learning, flaw type classification, acceptance 

criteria.   

 

1. Introduction 
 

The classification of indications in non-destructive testing (NDT) is a labor-intensive task, 

subject to operator bias. The advancements in the electronics and inspection techniques are 

ultimately bounded by a human interpretation step that can be improved by using machine 

learning algorithms. 

 

Machine learning (ML) is a subfield of Artificial Intelligence (AI) which uses statistical 

techniques to give computer systems the ability to learn from data [1]. Two conventional 

methods in ML are supervised and unsupervised learning. In the former, we need the input data, 

and some output data to learn the correct answers (e.g., classification and regression) in the 

latter the algorithm learns from the input data without knowing the output data (e.g., cluster 

analysis and association). 

 

Supervised learning simulates the NDT process where the operator labels the indications 

according to parameters like shape, location, and inspection method. Multiple variables are 

influencing this labeling: operator’s experience, inspection technique, material properties, etc. 

Supervised learning works on labeled data, which is the case of ultrasonic inspection by 

learning the patterns and associations between those labels. Once the algorithm has learned the 

classification model from a known dataset, it can be used in unclassified data. The known 

dataset is used to train the model and learn the classifications. In simple words, the algorithm 

learns from the indications classified by the operators, and then it could be applied to an 

unlabeled dataset and do the job with high accuracy. 

 

In this paper with first describe the data preparation and the database system used by the 

UTScan system, which allows the direct application of ML techniques to our current and past 

inspection databases. We then discuss the algorithm selection. The results section describes the 
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accuracy in the classification with different datasets, and finally, we provide conclusions and 

future work.  

 

 

2. Getting your data ready for Machine Learning 
 

Data collected during the NDT inspection is crucial to ensure the safety of pipelines. However, 

the consistency of the results and the reliability of the findings are heavily dependent on the 

personnel performing the inspections and evaluation of the results [2]. The good news is that 

ML algorithms can operate over large datasets and learn the classification for multiple 

indications from different operators. Even, if some indications have been incorrectly classified,  

thanks to the central limit theorem, the error in large numbers will significantly reduce. Hence 

the classification accuracy will improve.  

 

Pipeline inspection data is the perfect case to apply a supervised learning algorithm. The 

database holds information about the indications, such as depth, height, length, etc., together 

with the identification, e.g., incomplete fusion, porosity, lack of fusion, etc. These are the labels 

the operator used to classify the indications along with their evaluation as acceptable or 

rejectable. 

 

 

 
 

      Figure 1: UT Flaw Tracker, filters the dataset to feed the proper data into the ML 

algorithm.  

 

 

 In principle, ML learns from data, but you have to feed the right data into the algorithm to get 

valuable results. We have built an in-house statistical tool (UT Flaw Tracker) which filters 

the data before the ML step. The UT Flaw Tracker connects to the database and sequentially 

filters out the data by selecting: Project, Location, Crew, Dates, Evaluation (Rejectable, 

Acceptable), Pipe OD, Wall Thickness and Cal Block (you can have different pipe diameters 

in the same project, the same with WT and calibration blocks). After selecting these parameters, 



                            
 

you are prompted to choose the flaw types or identified indications. A sample filtered looks like 

Table 1.  

 

Table 1: A subset of the UT Flaw Tracker output table used to perform statistical calculations 

and to feed the ML algorithm. 

 
 

 

The next steps involve the statistical analysis about the distribution of indications in the pipe, 

number of indications in the wall thickness and the frequency of occurrence of each flaw type 

and the percentage of the total amount. The statistical analysis already provides valuable 

information, but ML could be an additional tool for validation. Thus, we use the generated table 

to feed the ML algorithms.   

 

 

3. Algorithm Selection 
 

The algorithm selection is entirely data-driven. As there is no previous study on the dataset, the 

best option is to run different algorithms and compare their performances, to select the best-

suited algorithm for your application — usually, the one consistently producing the best results. 

 

We train the algorithm to learn from the inspection data to infer the classification of the 

indications with the same accuracy as the operators do or higher. The task can be described as: 

 

WeldNum Result Class Ident Label WeldSide Start End Length Depth Height WallThickness ScanDateTime

Weld01 Accepted LB IF VOL-3 UpStream 274.0 282.0 8.0 4.3 1.0 19.1 9/28/2017 0:05

Weld02 Rejected LB IF VOL-Cap UpStream 366.0 475.0 109.0 1 1.0 19.1 9/28/2017 0:35

Weld03 Accepted 0.0 0.0 0.0 0 0.0 19.1 9/28/2017 0:38

Weld04 Accepted 0.0 0.0 0.0 0 0.0 19.1 9/28/2017 0:50

Weld05 Accepted 0.0 0.0 0.0 0 0.0 19.1 9/28/2017 1:34

Weld06 Rejected LB IF TOFD N/A 331.0 358.0 27.0 16.1 1.0 19.1 9/28/2017 1:54

Weld07 Accepted LB IF TOFD N/A 281.0 286.0 5.0 15.4 1.0 19.1 9/28/2017 2:07

Weld08 Accepted LB IF TOFD N/A 433.0 437.0 4.0 13 1.0 19.1 9/28/2017 2:24

Weld09 Rejected LB IF TOFD N/A 160.0 182.0 22.0 16.3 1.0 19.1 9/28/2017 2:45

Weld10 Rejected VR VOL TOFD N/A 238.0 250.0 12.0 19.1 3.5 19.1 9/28/2017 3:25

Weld11 Rejected VI P TOFD N/A 451.0 495.0 44.0 16.5 1.3 19.1 9/28/2017 3:37

Weld12 Accepted 0.0 0.0 0.0 0 0.0 19.1 9/28/2017 3:42

Weld13 Accepted 0.0 0.0 0.0 0 0.0 19.1 9/28/2017 4:18

Weld14 Accepted 0.0 0.0 0.0 0 0.0 19.1 9/28/2017 4:34

Weld15 Accepted 0.0 0.0 0.0 0 0.0 19.1 9/28/2017 4:55

Weld16 Accepted 0.0 0.0 0.0 0 0.0 19.1 9/28/2017 5:13

Weld17 Accepted 0.0 0.0 0.0 0 0.0 19.1 9/28/2017 5:27

Weld18 Accepted LB IF VOL-Cap UpStream 517.0 8.0 20.0 1.6 1.0 19.1 9/28/2017 5:55

Weld19 Accepted LB IF TOFD N/A 370.0 375.0 5.0 16 1.0 19.1 9/28/2017 6:12

Weld20 Accepted LB IF VOL-1 UpStream 121.0 127.0 6.0 13.5 1.0 19.1 9/28/2017 6:27

Weld21 Rejected LB IF TOFD N/A 182.0 243.0 61.0 16.2 2.5 19.1 9/28/2017 6:46

Weld22 Accepted LB Geo CL UpStream 524.0 50.0 55.0 0 0.0 19.1 9/28/2017 7:02

Weld23 Accepted LB Geo CL DownStream 493.0 50.0 86.0 0 0.0 19.1 9/28/2017 7:28

Weld24 Accepted LB IF VOL-4 UpStream 252.0 254.0 2.0 4.3 1.0 19.1 9/28/2017 7:42

Weld25 Accepted LB Geo CL DownStream 472.0 518.0 46.0 0 0.0 19.1 9/28/2017 7:54

Weld26 Rejected VR VOL TOFD N/A 258.0 270.0 12.0 19.1 3.5 19.1 9/28/2017 8:18

Weld27 Accepted LB Geo CL UpStream 426.0 451.0 25.0 0 0.0 19.1 9/28/2017 8:49

Weld28 Accepted 0.0 0.0 0.0 0 0.0 19.1 9/28/2017 9:11

Weld29 Accepted 0.0 0.0 0.0 0 0.0 19.1 9/28/2017 9:28

Weld30 Accepted LB Geo CL DownStream 483.0 62.0 108.0 0 0.0 19.1 9/28/2017 9:47

Weld31 Accepted LB Geo CL DownStream 509.0 57.0 77.0 0 0.0 19.1 9/28/2017 10:27

Weld32 Accepted LB Geo CL DownStream 445.0 33.0 117.0 0 0.0 19.1 9/28/2017 10:44

Weld33 Rejected VR VOL TOFD N/A 202.0 219.0 17.0 19.1 2.2 19.1 9/28/2017 11:13

Weld34 Accepted LB IF Cap2 UpStream 250.0 279.0 29.0 2 1.2 19.1 9/28/2017 11:42

Weld35 Accepted LB Geo CL DownStream 467.0 520.0 53.0 0 0.0 19.1 9/28/2017 12:05

Weld36 Accepted LB Geo CL DownStream 476.0 14.0 67.0 0 0.0 19.1 9/28/2017 12:26

Weld37 Accepted LB Geo VOL-4 DownStream 414.0 468.0 54.0 0 0.0 19.1 9/28/2017 12:43



                            
 

I- Given the measured data from the UT system, classify the Flaw Types as 

Geometry, Incomplete Fusion, Porosity, etc. and evaluate the indication into 

Accepted it or Rejected. 

 

The parameters we use to train the algorithm are called predictors; in this case: 

 

 Flaw Identification  

 Channel  

 WeldSide  

 Start  

 End  

 Length 

 Depth 

 Height 

 WallThickness – Physical data 

 

 

Another condition to impose to the algorithm is to be consistent and with an accuracy close to 

100%; independently of your mood, the weather, your vision, or any other external situation 

affecting the inspection result and its reproducibility. 

 

For the algorithm selection, we use the Classification Learner App in Matlab [3] over a dataset 

of 766 indications.  

 

We use the nine predictors listed above to train multiple algorithms, as is shown in Figure 2.  

 

 

 
 

Figure 2: Training the multiple algorithms on the training dataset. An Ensemble method 

produces the highest accuracy of 96.6%. 

 

 



                            
 

The Confusion Matrix shows the true positive rate and false negative rate. We can interpret 

from the confusion matrix that for the accepted indications, the algorithm predicted class 

matches 99% of the true class, while only the 78% matches the rejected, meaning that we should 

expect more false negatives in rejected indications.   

 

 
 

Figure 3. The Confusion Matrix. 

 

The best performing algorithm was the ensemble Bagged Trees. With this algorithm, we create 

the model to run over the new unlabeled datasets.  

 

 

 

4. Results 
 

Once the Machine Learning algorithm produces a reasonable result, we process a new dataset 

with the Trained Algorithm. 

 

A database from a recent project (2018) was used as a testing dataset. We ran the trained model 

over the 657 indications in this new dataset, hiding the labels and evaluation performed by the 

operators (flaw types and evaluation: accepted or rejected). 

 

From 657 Indications, the ML algorithm correctly classified 654 in Accepted or Rejected for 

an accuracy of 99.5%. Only three indications were accepted that the algorithm thinks we should 

reject. After consultation with the specialist, these were close-calls. These indications were 

correctly classified by the operators but were so close to the acceptable limit that another 

operator could have had a different opinion. 

 

For the flaw type, the accuracy was 97.56%, the algorithm misclassified 16 indications, but 

after comparing the results in Table 2, many of the indications were labeled as non-classified 



                            
 

(NC) by the ML algorithm. This NC label comes from the training dataset where operators 

marked but did not label the indication. In practice, only two indications (Geo as IF and IF as 

Non-Classified), were wrongly classified by the algorithm leading to an accuracy of 99.69%. 

 

Table 2: Results of the ML Algorithm. Misclassified labels, 16 out of 657 indications. See the 

explanation on the text for the NC label. 

 

Operator ML Algorithm 

    {'Geo'}     {'NC' } 

    {'Geo'}     {'NC' } 

    {'Geo'}     {'IF' } 

    {'Geo'}     {'NC' } 

    {'Geo'}     {'NC' } 

    {'Geo'}     {'NC'} 

    {'Geo'}     {'NC' } 

    {'Geo'}     {'NC'} 

    {'Geo'}     {'NC' } 

    {'Geo'}     {'NC' } 

    {'Geo'}     {'NC' } 

    {'Geo'}     {'NC' } 

    {'Geo'}     {'NC' } 

    {'Geo'}     {'NC' } 

    {'Geo'}     {'NC' } 

    {'IF' }     {'Geo' } 

 

 

3. Conclusions 
 

The machine learning algorithm classified the new dataset with high accuracy, yet, at this stage, 

we advise against completely unsupervised classifications, because the method is intended as a 

guide instead of a fully automated blind approach. 

We see the ML algorithm as a tool for the operator in the classification of flaw types and 

evaluation. Also, the algorithm could be used to validate the acceptance criteria. 

We are working to integrate the Machine Learning functionality into the current version of the 

UTScan system as a validating method. 
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