Effects of a fracture on ultrasonic wave velocity and attenuation of a homogeneous medium

Dr. Giovanni Cascante (gcascant@uwaterloo.ca)

Authors:

Sabah Hassan

Diana Gomez Rodriguez

Presenter: Muhammad Irfan

Dr. Dipanjan Basu

Dr. Maurice Dusseault

Outline

- > Introduction
- Problem statement and objective
- Background
- Methodology and materials
- > Results
- **Conclusions**

Introduction

Ultrasonic pulse velocity (UPV) method (ASTM reference) is used for damage detection

Velocity is not sensitive

❖ Wave attenuation is sensitive

Problem statement and objective

- Problem statement
 - Damage detection is performed using wave velocity alone.

- Objective
 - Detection of damage using wave velocity and attenuation in UPV testing.

Tasks to achieve the objectives

*Assessment of fracture propagation in a homogenous material (PMMA) using UPV method.

*Correlation of fracture length with changes in wave parameters (velocity and attenuation).

Background

UPV method

Wave velocity (V_p)

$$V_p = \frac{L}{t}$$

Attenuation (A)

Methodology

Materials – testing scheme

PMMA specimens

			Fabrication conditions of PMMA	
Specimen #	Type	Thick. (mm)	Temperature (C°)	Pressure (KPa)
PA-(1-4)	Annealed	25.4	150	24
PA-(5-8)	Annealed	25.4	150	12
PA-(9-10)	Annealed	25.4	150	6
PA-(11-13)	Annealed	12.7	150	12
PA-(14-16)	Annealed	12.7	177	6
PA-17	Annealed	12.7	177	12
PS-(1-2)	Solid	25.4	-	-

Heating and pressurizing time: 6 hours

Signal windowing

a – original signal b – window factor (0.1) c – window factor (0.3)

Results – Case - I

Change in V_p

$$d = 12.7 \text{ mm}$$

d = 25.4 mm

Case – I – Comparison of $\overline{V_p}$ and \overline{A}

Case – I - Comparison of V_p and A

Thickness = 25.4 mm

% difference in spectrum area

Thickness = 12.7 mm

— Intact — +Hole — +Fracture

Case - I – Frequency spectra

Thickness = 25.4 mm

Case – II – Elastic moduli

Stress-strain from compression test

	PA-1	PA-2	PS-1	PS-2
$E_A[GPa]$	1.69	1.85	1.87	1.80
$E_B[GPa]$	0.86	1.07	1.05	0.93
$E_d[GPa]$	4.96	4.96	4.66	4.66

 E_A - initial

 $E_B - final$

E_d – dynamic using wave paramters

Case – II - Fracture growth

Case – II - V_p and fracture vs load

Case – II - Comparison of V_p and A

Typical annealed PMMA

Case – II - Frequency spectra

Typical annealed PMMA

- P= 50 kN - P = 140 kN

Case – II – Effect of frequency bandwidth

Typical annealed PMMA

Conclusions

- * Wave velocity shows extremely low sensitivity to fracture length ($\approx 3 \%$).
- * Wave attenuation is much more sensitive
 - Effect of fracture length on wave amplitudes: Case I \approx 45 %, Case II \approx 70 %
 - Effect of fracture length on spectrum area: Case I \approx 53 %, Case II \approx 70 %
- Areas calculated using smaller frequency ranges are more sensitive than larger
 - frequency ranges

Acknowledgement

- ➤ Ministry of Higher Education and Scientific Research in Iraq.
- ➤ Natural Sciences and Engineering Research Council of Canada (NSERC)
- ➤ University of Waterloo.

