Non-destructive evaluation of impact damage in carbon fibre reinforced polymer using infrared thermography and shearography

By: Ali Khademi Far, Martin Viens, Louis-Daniel Théroux, Olivier Arés
Institution: ÉTS

Title: Non-destructive evaluation of impact damage in carbon fibre reinforced polymer using infrared thermography, shearography

Industrial partners: CTA
Outline

1. Introduction
2. Literature review
3. Problem statement
4. Objectives
5. Methodology
6. Results
7. Future works
Introduction

Carbon Fiber Reinforced Polymer (CFRP) laminate

Advantages

• High strength to weight ratio
• Corrosion resistance
• Specific thermal properties

Disadvantages

Vulnerable to delamination and impact damage

[1] www.aerodefensetech.com
Introduction

Impact damage

Introduction

Shearography

Measure the spatial derivative of surface displacement (sensitive to surface strain) by using interferometric optical measurement technique.
Introduction

Infrared Thermography (IRT)

Analysis of thermal flow which originates from thermal excitation of an object

Pulse Infrared Thermography (PT)

Flash heating is applied and thermal images are collected while the specimen is cooling down
Outline

1. Introduction
2. Literature review
3. Problem statement
4. Objectives
5. Methodology
6. Results
7. Future works
Evaluation the capability of NDT methods to inspect CFRP

<table>
<thead>
<tr>
<th>Methods</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT [1]</td>
<td>• Fast and affordable</td>
<td>• Not able to characterize interior damages</td>
</tr>
<tr>
<td>RT [2]</td>
<td>• Detecting matrix cracks</td>
<td>• Not suitable for laminate with several interfaces</td>
</tr>
<tr>
<td>UT [1]</td>
<td>• Identifying the defect position in plane and through the thickness</td>
<td>• Needs contact medium and point by point inspection</td>
</tr>
<tr>
<td>Infrared [2]</td>
<td>• Fast inspection rate</td>
<td>• Adequate data processing is needed</td>
</tr>
<tr>
<td>ESPI [3]</td>
<td>• Evaluating the performance of the laminate</td>
<td>• Sensitive to rigid body motion and environmental factor</td>
</tr>
<tr>
<td>Shearography [3]</td>
<td>• Evaluating the performance of the defected laminate</td>
<td>• Hard to detect to defects other than delamination</td>
</tr>
<tr>
<td></td>
<td>• Detecting the defects with smallest values of impact energy</td>
<td></td>
</tr>
</tbody>
</table>

Outline

1. Introduction
2. Literature review
3. Problem statement
4. Objectives
5. Methodology
6. Results
7. Future works
Problem statement

How features and capabilities of IRT and shearography are evaluated to detect impact damages?
Outline

1. Introduction
2. Literature review
3. Problem statement
4. Objectives
5. Methodology
6. Results
7. Future works
Objective

To evaluate the detect ability and sizing capability of IRT and shearography methods for different levels of impact damage in CFRP
Methodology

Samples

- CFRP laminate, CYCOM 5276, $[45/0/−45/90]_{2s}$
- Size: 30 cm x 30 cm, 2.4 mm
- Impact damages standard: ASTM D7136

<table>
<thead>
<tr>
<th>Coupons</th>
<th>Impact Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E1</td>
</tr>
<tr>
<td>2</td>
<td>E2</td>
</tr>
<tr>
<td>3</td>
<td>E3</td>
</tr>
</tbody>
</table>
Methodology

Ultrasonic setup

• Immersion tank technique

• Zetec Topaz, UltraVision software, 64-element 5MHz probe
Methodology

Shearography setup

• DANTEC Q-800 portable shearography system

• Eight lasers of 120 mW at a wavelength of 660nm

• Thermal load is applied by a 750W heating lamp

• Data are analysed by ISTRA4D X 86 software
Methodology

Thermography setup

• Telops cooled infrared camera 640 x 512 detectors
• Matlab and IR-view software
• Two 3 kJ Hensel flash lamps
Outline

1. Introduction
2. Literature review
3. Problem statement
4. Objectives
5. Methodology
6. Results
7. Future works
Results

UT results

E2, 10 J
E3, 20 J
E4, 25 J
Results

Shearography results

E2, 10 J
E3, 20 J
E4, 25 J

2.4 mm shearing distance
Results

IRT results: Pulse phased thermography

E2, 10 J
E3, 20 J
E4, 25 J

minimum available frequency of 0.03Hz
Results

Indication sizing

<table>
<thead>
<tr>
<th>Coupons</th>
<th>C-scan</th>
<th>Shearography</th>
<th>PPT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Area(mm²)</td>
<td>Area(mm²)</td>
<td>difference (%)</td>
</tr>
<tr>
<td>E2</td>
<td>441</td>
<td>310</td>
<td>29.7</td>
</tr>
<tr>
<td>E3</td>
<td>522</td>
<td>394</td>
<td>24.5</td>
</tr>
<tr>
<td>E4</td>
<td>547</td>
<td>487</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Method

- Coupons
- C-scan
- Shearography
- PPT
Thank you for your attention!

Ali Khademi Far
ali.khademi-far.1@ens.etsmtl.ca