

Dynamic Frequency-Domain Photothermal Imaging Methodologies for Non-Destructive Evaluation of Industrial Materials: A Review of the State-of-the-Art

> Pantea Tavakolian Andreas Mandelis

Outline

- 1. Introduction about thermography systems
- 2. Lock-in thermography
- 3. Match Filtering thermography
- 4. Pulsed photothermal radar
- 5. Enhanced truncated correlation photothermal coherence tomography (ETC-PCT)
- 6. Conclusions
- 7. Future Work

Active thermography system

Step 1: Heating; In some cases a heating source controller is connected to a signal generator to receive the modulating signal.

Step 2: thermal diffusion through the material bulk following the heat deposition cut-off at the surface.

Step 3: Infrared camera detection.

Step 4: The thermogram sequence is processed with the reconstruction algorithm on a computer.

Lock-In thermography

Ashkan Ojaghi, Artur Parkhimchyk, and Nima Tabatabaei, "First step toward translation of thermophotonic lock-in imaging to dentistry as an early caries detection technology" (2016)

Match-filter thermography algorithm

CADIPT

Thermal wave-radar

A steel sample containing several blind holes with steel overlayer of various thicknesses.

Theoretical TWR signals for 100-µm thick and semi-infinite steel samples. The inset magnifies the time interval checked in the main plot

CADIPT

Binary Phase Coding Thermal Coherence thermography

 Binary Phase Coding (BPC) signal construction in time (top) and frequency (bottom) domains for a 7bit code and 5 Hz carrier

 Teeth matrix with hidden interproximal early caries. The red rectangle shows the imaged area. (b)
Conventional LIT and (c)
TCT phase images of the teeth matrix

Pulsed chirp photothermal radar algorithm

Pulsed chirp photothermal radar

 $T(\vec{\mathbf{r}},t;\omega) = T_0 + T_{dc}(\vec{r},t;\omega) + T_{ac}(\vec{r},t;\omega)$

where *a* is the laser beam spotsize and *u* is the thermal diffusion length

Enhanced Truncated Correlation– Photothermal Coherence Tomography (E-TC-PCT) reconstruction algorithm

- CADIPT
- E-TC-PCT cross-correlates the in-phase and the quadrature of a delay-incremented reference chirp (R_{n,0} and R_{n,90}) with the thermal images (S) captured by the camera in a pixel-bypixel format.

Enhanced TC-PCT reconstruction algorithm, and amplitude and phase measurements

Excitation and thermal signal generation

- Excitation pulses: short duration pulses under thermal confinement (much less than the thermal relaxation time) with high peak power.
- Reference chirp: Phase incrementing (d in ms)
- A chirp is a signal in which the frequency increases (up-chirp) or decreases (down-chirp) with time.

Photothermal chirp

- 1st reference chirp
- 2nd reference chirp
- 3rd reference chirp

3D images of holes $\leq 1.5 \text{ mm deep}$

3–D visualization of the invisible subsurface holes in a steel block sample using TC–PCT imaging. Amplitude tomograms of the enhanced TC–PCT of hole h_1 (a), h_2 (b), and h_3 (c) with truncation time gate of 40 ms. Each image covers an area of 2.1 cm × 1.68 cm on the sample, and the image delay time range is 1.2 s which corresponds to depth of 4.39 mm. A and B on these images display the holes, and the energy accumulation at the back surface, respectively. The laser beam illuminating the sample from the bottom is a pulsed chirped signal with sweep range of 0.2 Hz–0.6 Hz, duration 12 s, and pulse duration 10 ms. Diameter of the illumination beam is 3 cm, and the laser fluence per pulse is 7 mJ/cm².

Defects in the inlay sample

A photograph of the front side (recto) of the final sample is shown in (a) and a middle layer underneath (a) is shown in (b).

The positions, names and sizes of the defects in the inlay sample: c) recto, and d) verso.

It should be noted that defect 1 affects the entire middle layer, while defect 2 affects only one half of it.

Cross-sectional image of the sample (e)

Defectoscopy in an art object

Imaging area: 3.22 cm imes 2.58 cm

TC-PCT images of a delamination of a top layer

TC-PCT images of drilled hole in the middle

TC-PCT images of ½ drilled hole in the middle

TC-PCT images of a wood knot in the middle layer

E-TC-PCT images of a delamination of a top layer

E-TC-PCT images of drilled hole in the middle

E-TC-PCT images of ¹/₂ drilled hole in the middle

E-TC-PCT images of a wood knot in the middle layer

Defectoscopy in an art object

TC-PCT images of filled hole with stucco and charcoal ⁷ in the middle

TC-PCT images of a larger area showing two defects in one image experiment

TC-PCT images of a deep hole in the middle layer

Amp

NDT in Canada 2018 | June 19-21 | Halifax, NS

Conclusions

Enhanced TC-PCT

- is a new thermal imaging modality that can provide high resolution 3D images of different specimen
- has higher axial resolution and depth range compared to all other modalities
- can be applied for non-destructive testing of industrial materials and art objects
- is able to be used for biomedical applications

Future work

- Signal analysis for each application to realize an image enhancement method for different case studies.
- New applications such as diagnosis of Osteoporosis

Thank you!