A Review of The Benefits of PWI/TFM for Weld Inspection

CINDE NDT in Canada Conference 2019

Table of Contents

- Historical Constraints of "Standard" FMC/TFM
- A Review of PWI/TFM and Associated Benefits
 - Inspection Speed
 - Sensitivity
 - Multi-Modal Real Time Acquisition
- PWI/TFM Inspection Examples
- Conclusion

Next Generation Ultrasonic Inspection Historical Constraints

Historical Constraints

\circ Too Slow!

 The volume of data (i.e. A-Scans) generated by FMC/TFM is much larger than PAUT (n vs. n²) = greater processing time = slower inspection speeds

• Too Much Data!

 \circ The volume of data (i.e. A-Scans) generated by FMC/TFM is much larger (n vs. n²) = much larger file size

Lack of Sensitivity/Penetration

 With a single element transmitting, sensitivity and penetration may be reduced

Next Generation Ultrasonic Inspection A Review of PWI/TFM and Associated Benefits

Benefits of PWI (PWI/TFM)

- PWI <u>acquisition</u> with TFM <u>image</u> processing = PWI/TFM
- Represents an optimization of both FMC data set acquisition and TFM image post-processing
- <u>5x-100x faster than traditional</u> <u>FMC/TFM</u>
- Provides greater sensitivity
- Very good penetration/SNR for attenuative materials (Ti, Inconel, etc.)
- Smaller file sizes
- Generally, an "up-correlation" in inspection frequency; e.g. austenitic welds inspected with 5MHz
- Reduced technique development time NDT in Canada 2019 | June 18-20 | Edmonton, Alberta

PWI (PWI/TFM) Explained

 PWI/TFM utilizes a larger transmitting aperture than FMC/TFM, but with the proper algorithmic image processing, the data set can still be used to create a TFM image

PWI (PWI/TFM) Explained

 As seen in the image below, several elements are transmitting at once, but the image reconstruction still considers each elemental transmit/receive pair, as in "standard" FMC/TFM

PWI Inspection Speed Inspection Speed (Example)

- Inspection speed (TPAC historical)
 - For 300mm metal path with 128 Element Probe x 2mm Pitch
 - 2.5MHz = ~2"/s
 - 5MHz = ~1"/s
- With recent new software developments by TPAC, inspection speeds of >12"/s are achievable

PWI Inspection Speed – Don't Blink!

PWI/TFM Sensitivity

128L PAUT Probe

~800mm Metal Path

NDT in Canada 20

Extended Metal Path Inspection

nton, Alberta

PWI Sensitivity

Extended Metal Path Inspection

One Setup, No "Focal Laws"!

Review of Wave Modes

Review of Wave Modes

x [mm]

16

18

20

85

90

x [mm]

95

Multi-Modal PWI Acquisition

Mutiple wave mode acquisition available in TPAC PWI/TFM

Multi-Modal PWI Acquisition

"Modal Merge" also available in TPAC analysis

Multi-Modal PWI Acquisition

57. Incomplete Root Penetration in Double Vee, UT, RT

"Modal Merge" also available in TPAC analysis

Next Generation Ultrasonic Inspection **PWI/TFM Inspection Examples**

Carbon Steel Plate

- Part
 - ~2" T
 - Manufactured Slag Inclusion
- Probe
 - 5MHz
 - 64 Element
 - No wedge
 - Centered on weld
 - TT Mode

NDT in Canada 2018 | June 19-21 | Halifax, NS

Carbon Steel Plate

PWI acquisition with TFM image reprocessing 1M TFM reconstrucion points • 1000 x 1000

NDT in Canada 2019 | June 18-20 | Edmonton, Alberta

Carbon Steel Plate

PWI acquisition with **TFM** image reprocessing ▶ 1M TFM reconstrucion points • 1000 x 1000

4" Thick Plate

- Part
 - Carbon Steel
 - 4" T DV
 - Inclusion, I.P., Crack
- Probe
 - 5MHz
 - 64 Element
 - TT Mode

4" Thick Plate

PWI acquisition with TFM image reprocessing
1M TFM reconstruction points (1000 x 1000)

NDT in Canada 2019 | June 18-20 | Edmonton, Alberta

CRA (Inconel 59) Welded SDH Block

- Part
 - Carbon Steel Pipe with Alloy 59 Weld
 - ~1.75" T
 - Ø0.125" SDH at 1/4, 1/2, and 3/4 T
- Probe
 - 5MHz
 - 64 Element
 - LL Mode

CRA (Inconel 59) Welded SDH Block

- PWI acquisition with TFM image reprocessing
- ~250K TFM reconstruction points
 – 500 x 500

Dissimilar Metal SDH Block

- Part
 - -SS > Inc Weld > CS
 - ~1.25" T
 - SDH
- Probe
 - 5MHz
 - 64 Element
 - LL Mode

Dissimilar Metal SDH Block

PWI acquisition with **TFM** image reprocessing ~250K TFM reconstrucion points • 500 x 500

Conclusion

- PWI/TFM offers:
 - Faster acquisition speeds
 - TPAC can offer >12"/s
 - Superior resolution of TFM imaging
 - Better characterization and sizing
 - Higher frequency/higher resolution inspection of attenuative materials compared to PAUT
 - Reduced technique development time
 - Being focused "everywhere" reduces the need for determining focal laws/using multiple groups
 - TPAC can offer inspection with multiple wave modes in one acquisition
 - Greater (full) coverage with one line scan (each side)

Thank You!

Questions or Comments?