PROBABILITY OF DETECTION OF SECOND LAYER CRACKS AT FERROUS FASTENERS IN AIRCRAFT LAP-JOINT STRUCTURES FOR PULSED EDDY CURRENT

C. Uemura D.M. Butt P.R. Underhill T.W. Krause Dept. of Physics, Royal Military College of Canada

BLIND CALIBRATON-LESS DETECTION OF DEFECTS USING EDDY CURRENT

C. Uemura D.M. Butt P.R. Underhill T.W. Krause Dept. of Physics, Royal Military College of Canada

OUTLINE

Motivation
Approach (and challenges)
Robust Statistics
Application
Conclusions

MOTIVATION

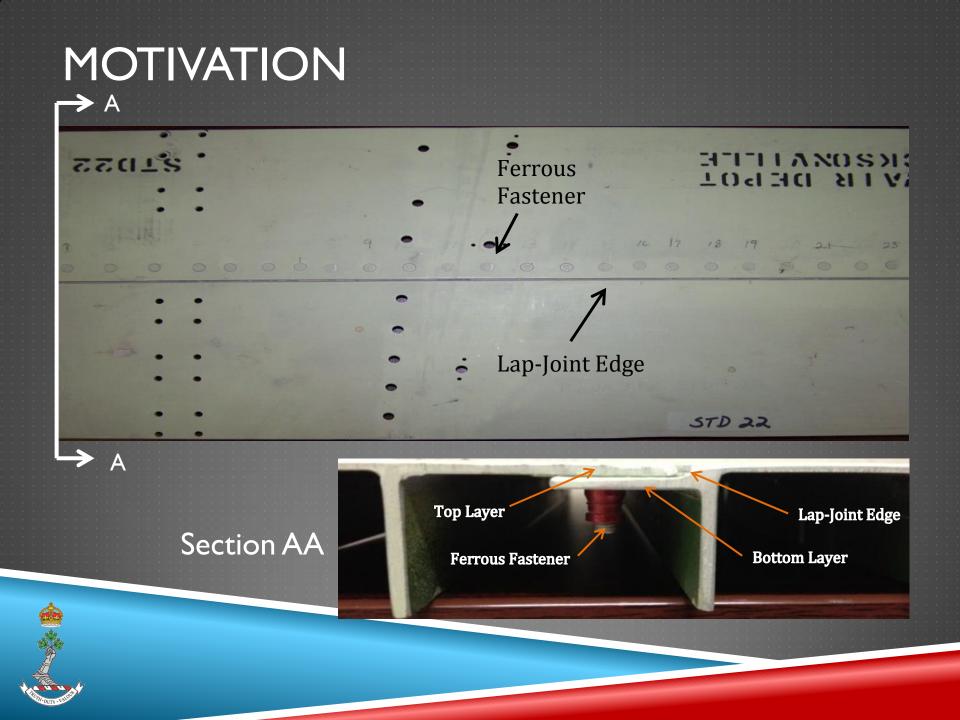
Find cracks around ferrous fasteners (Aurora (P-3 Orion) aircraft)

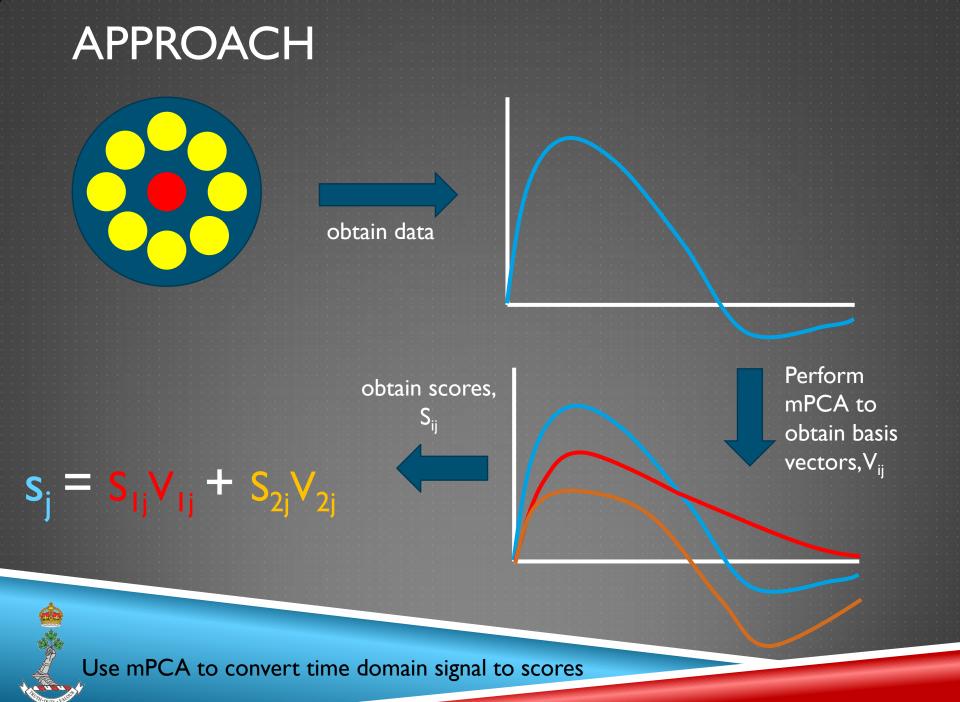
MOTIVATION

Currently uses bolt hole eddy current

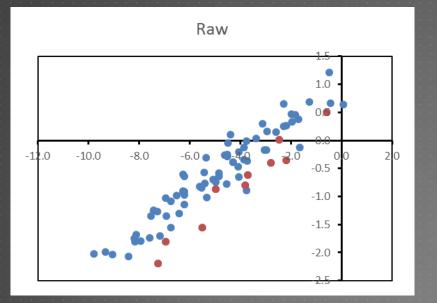
Requires fastener removal

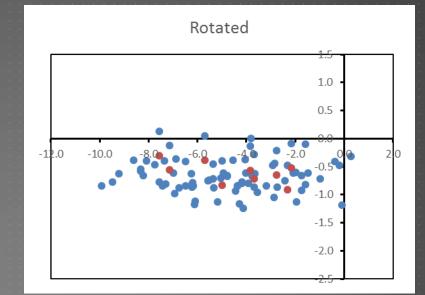
- Tedious and time-consuming
 - Large down-time
- High Cost


Possible damage to structure

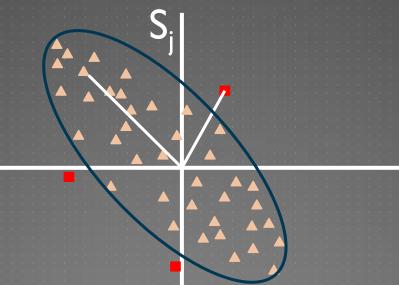

Want a method to screen fasteners

False call rate vs a_{90/95}





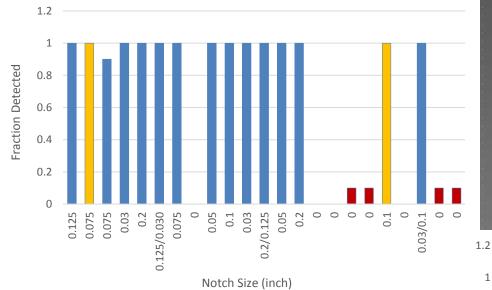
APPROACH

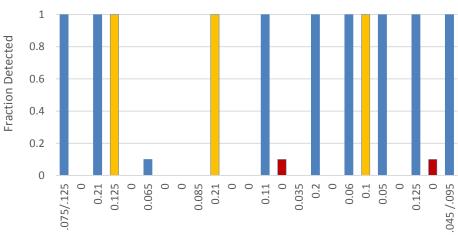


APPROACH

Scores are clustered in PCA space

Mahalanobis distance compensates for covariance of data and can be thought of as the distance in standard deviations. Outliers (
) are actually further from centroid (in standard deviations) than pink (blank) points




MAHALANOBIS DISTANCE

- Measure of distance of a point from the mean in standard deviations.
- Accounts for different variances/covariances
- Needs the covariance matrix, C, and mean vector for the blanks
- If C and the mean vector are contaminated with crack data, data for all cracks will be masked, d < d_{true}

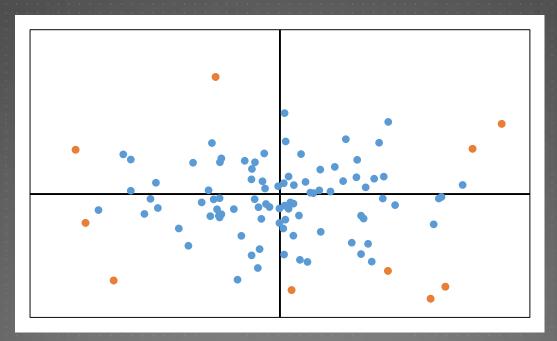
RESULTS

Notch Size (inch)

ISSUES

How to obtain an uncontaminated covariance matrix? Robust Statistics
Lab samples are defect rich. How to generate large numbers of blanks like the real case? Bootstrap Method

ROBUST STATISTICS


Find an uncontaminated kernel and calculate mean, covariance matrix

- Minimum Covariance Determinant
- Smallest HalfVolume

Find the tightest data group that encloses a certain fraction, D, of the data Want D to be as large as possible without capturing any outliers so estimate of C will be good

ROBUST STATISTICS

Only Use a certain data fraction (DF), ignoring most distant points

Use median instead of mean Mean absolute deviation instead of standard deviation

BOOTSTRAP METHOD

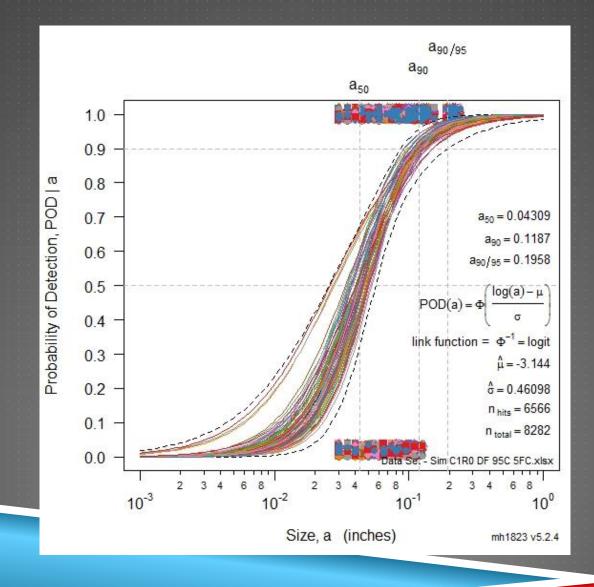
Blanks

S1	S2	S3	S4	S5
2.35E+00	-1.58E+00	-3.29E-02	1.62E-02	-1.48E-02
4.52E+00	-8.96E-01	7.29E-02	-1.98E-02	1.66E-02
6.13E+00	-6.10E-02	-1.18E-02	1.61E-02	1.43E-02
6.16E+00	2.53E-01	-3.63E-03	-4.45E-02	-7.12E-03
6.68E+00	-9.94E-02	-1.83E-02	-4.91E-02	7.98E-03
6.71E+00	6.47E-01	3.22E-02	4.88E-02	1.43E-02

Cracks

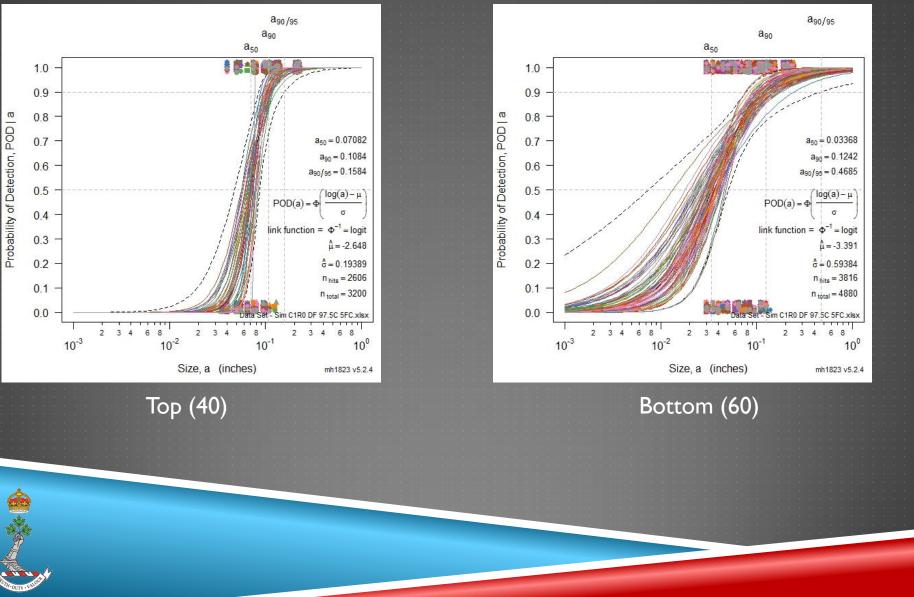
S1	S2	S3	S4	S5
8.19E+00) 1.15E+00	-2.98E-02	1.55E-02	1.48E-04
4.33E+00) -4.63E-01	5.22E-03	9.47E-03	-4.60E-03
5.95E+00	0 4.28E-01	2.23E-02	3.48E-02	-6.60E-03
6.72E+00) 3.91E-01	2.86E-01	-4.69E-02	-2.40E-03
4.52E+00) -4.66E-01	7.27E-02	8.54E-03	3.23E-03
5.96E+00) 3.40E-01	3.78E-01	-3.34E-02	8.33E-04
7.46E+00) 7.10E-01	-7.51E-03	-2.23E-03	1.53E-03

S1	S2	S3	S4	S5
8.19E+00	1.15E+00	-2.98E-02	1.55E-02	1.48E-04
4.33E+00	-4.63E-01	5.22E-03	9.47E-03	-4.60E-03
5.95E+00	4.28E-01	2.23E-02	3.48E-02	-6.60E-03
6.72E+00	3.91E-01	2.86E-01	-4.69E-02	-2.40E-03
4.52E+00	-4.66E-01	7.27E-02	8.54E-03	3.23E-03
5.96E+00	3.40E-01	3.78E-01	-3.34E-02	8.33E-04
7.46E+00	7.10E-01	-7.51E-03	-2.23E-03	1.53E-03
5.57E+00	8.44E-03	-2.27E-02	3.37E-02	5.07E-03
1.09E+01	1.42E+00	-2.38E-01	-2.93E-02	-1.76E-03
3.48E+00	-1.50E+00	-6.33E-02	-4.75E-02	-7.08E-03
9.64E+00	6.05E-01	-2.32E-01	-3.04E-02	-1.29E-02
8.25E+00	1.10E+00	-4.08E-02	1.55E-02	-4.24E-03
8.73E+00	1.23E+00	2.84E-02	-4.83E-03	4.00E-03
7.68E+00	1.16E+00	6.51E-02	3.76E-02	-5.10E-03
7.54E+00	7.60E-01	2.79E-01	-2.16E-02	-5.66E-03
5.02E+00	-3.61E-01	3.48E-02	4.17E-03	-9.05E-04
4.70E+00	-4.20E-02	3.67E-01	-1.01E-02	-4.55E-03
6.46E+00	3.24E-01	-2.02E-02	1.65E-02	-4.98E-03
4.67E+00	-4.43E-01	-6.56E-02	3.72E-02	-1.84E-03



PRELIMINARY RESULTS

Need at least 40 fasteners in group


Want data fraction, D, to be as large as possible

POD

POD

FC/DF	95%	97.5%	100%
5%	0.139	0.148	0.149
10%	0.124	0.115	0.115

Bolt hole (unfinished) 0.050

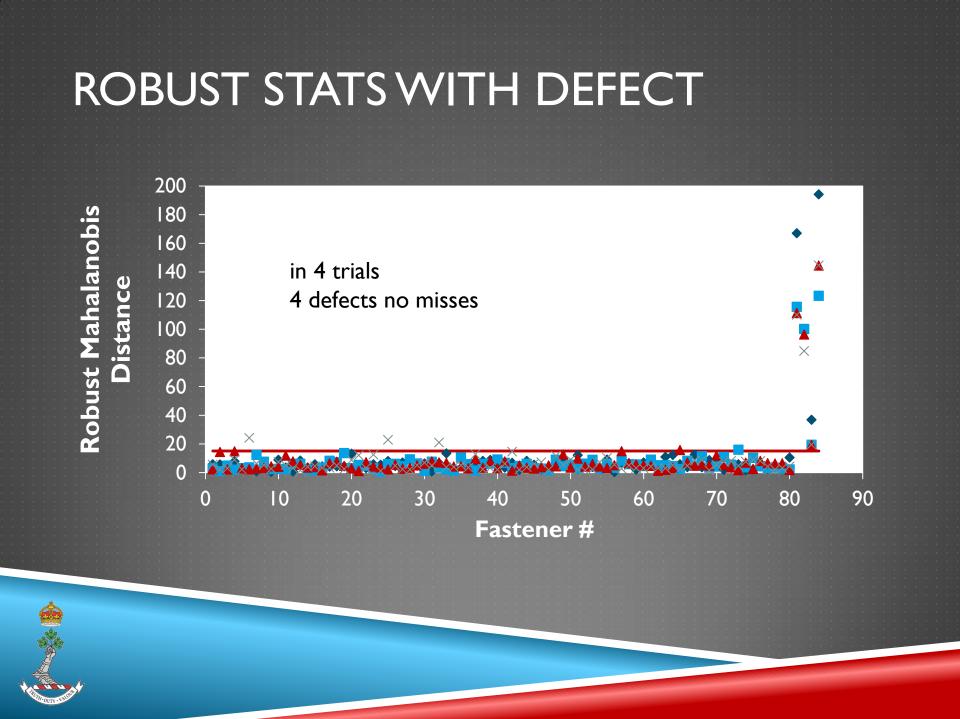
SUMMARY

Cluster approach can detect defects without calibration Robust statistics allow the technique to be used blind when defect density is low.

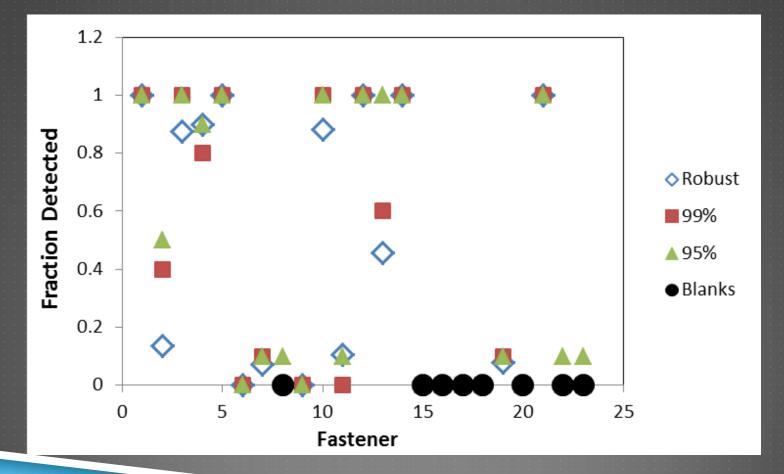
What is the cost of a "miss" or false call

Need to run blind detection on higher defect densities to determine how this affects POD

Can we use a second criterion to reduce misses?



ACKNOWLEDGEMENTS


DTA AERAC Committee

QUESTIONS ?

NAVAIR DATA

