ASSESSMENT OF DAMAGE IN ROCK BOLTS USING ULTRASONIC GUIDED WAVE MODE CONVERSION

Serge A. KODJO, Ishak MEDFOUNI,
Patrice RIVARD, Kaveh SALEH, Marco
QUIRION

Introduction

Rock bolts in underground excavation and civil engineer structure commonly suffer from corrosion and fatigue issues.

Introduction

- Visual inspection does not provide information on the state of the bolt inside the rock mass.
- Non-destructive methods have to be used for a proper diagnosis of the condition of rock bolts

Visual Inspection

Outline

- Background on ultrasonic pulse echo in cylindrical rod.
 - Ultrasonic Wave propagation and trailing echoes generation.
- Ultrasonic Transducer selection.
- Tests, data processing and some Results.
- Conclusion

Ultrasonic pulse echo in cylindrical rod

Dispersion

Attenuation disperse curve

(M.D. Beard, M.J.S. Lowe, "Non-destructive testing of rock bolts using guided ultrasonic waves" International Journal of Rock Mechanics & Mining Sciences 40 (2003) 527–536)

Trailing echoes generation

Trailing echoes generation

Trailing echoes generation

Ultrasonic Transducer selection

- ➤ Avoid interference → Narrowband transducer
- ➤ Reduce leakage → Central

 Frequency: wavelengh very short
 than the rock bolt diameter
- Transducer diameter: 0,75 po (19 mm).

Typical pulse echo signal

Tests and Results

Tests and Results

Rock bolts	d0 (mm)	d1 (mm)	I (m)	I_flaw (mm)
B1	25	21	3.5	60
B2	25	21	3.5	60
В3	25	21	3.5	60
reference	25	no flaw	3.5	no flaw

 $\boldsymbol{V_S}$, $\boldsymbol{V_L}$ measured from the flaw reflection

Rock bolts	V _s (m/s)	V _L (m/s)	Estimated value d (mm)
B1	3330	5899	22
B2	3290	5899	21
В3	3400	5903	21

Measured value d= 21 mm.

 V_S , V_L from average of 6 rock bolts V_S , V_L

Rock bolts	V _s (m/s)	V _L (m/s)	Estimated
			value d (mm)
B1			22
B2	3304	5899	21
В3			21
reference			25

NDT in Canada 2017 Conference (June 6-8, 2017)

Tests and Results

Evaluation of section loss during accelerated corrosion process

Number of days	Estimated diameter (by pulse echo) (mm)	Measured diameter (mm)
Day 0 (0H)	25	25
Day1 (24h)	24.5	-
Day2 (48H)	24.5	-
Day3 (96H)	21	20
Day4 (144H)	9,8-17	4,3-16

NDT in Canada 2017 Conference (June 6-8, 2017)

3 Blocks A, C, D submitted to accelerated corrosion Length rock bolt =1 m

Pulse echo energy loss during corrosion process

NDT in Canada 2017 Conference (June 6-8, 2017)

Cross correlation function

$$CC_{S_{unp}S_{prt}}(\tau) = \frac{\int_{t-t_w}^{t+t_w} S_{unp}(t') S_{prt}(t'-\tau) dt'}{\sqrt{\int_{t-t_w}^{t+t_w} S_{unp}^2(t') . S_{prt}^2(t') dt'}}$$

Position = (velocity x time)/2

Mesh of Matrix [position_i, day_k, $|max(CC)|_{i,k}$]

Localization of the flaw position

Localization of the flaw position

Conclusions

- The relevance of Pulse echo technique
 - to evaluate integrity of rock bolts
 - To detect flaw and its position
- Trailing echo delay allowed estimated rock bolt section loss.
- However trailing echo cannot estimate crack or pitting corrosion depth.
- Alternative technique is under development using flaw echo energy.

Thank You! Questions?

ACKNOWLEDGEMENT:

- Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT)
- Natural Science and Engineering Research Council of Canada (NSERC)