Monitoring Bridge Vibrations via Pedestrians and Mobile Sensing

Ekin Ozer

- Introduction
- Biomechanical Models
- Walk-Induced Vibrations
- Transfer Functions
- Field Tests
- Results and Discussion
- Conclusion

Introduction

- Structural Health Monitoring (SHM)
- Mobile and Smart Sensors
- Smartphone-Based SHM
- SHM via Pedestrian Data
 - Stationary Form
 - Moving Form

Biomechanical Models

- Pedestrian Activity
 - Walking (Moving)
 - Standing (Stationary)

Mayagoitia RE, Nene AV and Veltink PH. Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems. *J Biomech* 2002; 35(4): 537–542.

Curone D, Bertolotti GM, Cristiani A, et al. A real-time and self-calibrating algorithm based on triaxial accelerometer signals for the detection of human posture and activity. *IEEE T Inf Technol B* 2010; 14(4): 1098–1105.

Wong WY, Wong MS and Lo KH. Clinical applications of sensors for human posture and movement analysis: a review. *Prosthet Orthot Int* 2007; 31(1): 62–75.

Qassem W, Othman MO and Abdul-Majeed S. The effects of vertical and horizontal vibrations on the human body. *Med Eng Phys* 1994; 16(2): 151–161.

Walk-Induced Vibrations

Theoretical Loads due to Pedestrian Motion

$$F_p(t) = G + \sum_{i=1}^{n} G \cdot \alpha_i \cdot \sin(2\pi i f_p t - \varphi_i)$$

Bachmann H and Ammann W. Vibrations in structures: induced by man and machines. Zürich: International Association for Bridge and Structural Engineering, 1987.

Transfer Functions

Vibration Features of a Standing Pedestrian

$$H_{system}(w) = \frac{1}{\sqrt{(k - w^2 \cdot m)^2 + (w \cdot c)^2}}$$

Ewins DJ. Modal testing: theory, practice and application.Baldock: Research Studies Press Ltd, 2000.

Inman DJ. Engineering vibrations. Upper Saddle River, NJ: Prentice Hall, 2000.

NDT in Canada 2018 | June 19-21 | Halifax, NS

standing

Transfer Functions

Structural Vibration Transmission through Pedestrian Body

$$F_{output}(w) = H_{system}(w) \cdot F_{input}(w)$$

$$F_{intermediary}(w) = H_{structure}(w) \cdot F_{source}(w)$$

$$F_{sensor}(w) = H_{pedestrian}(w) \cdot F_{intermediary}(w)$$

$$H_{structure}(w) = \frac{F_{sensor}(w)}{H_{pedestrian}(w) \cdot F_{source}(w)}$$

$$H_{structure}(w) = \frac{F_{sensor}(w)}{H_{pedestrian}(w)}$$

standing

ł

Field Tests

Pedestrian Bridge and Phone Location Scenarios

Field Tests

Sources of Uncertainties

Source	Optimistic case	Pessimistic case	Affected process	
Vibration	Ambient (broadband)	Operational (narrowband)	Loading	
Activity	Stationary	Moving	Sensing/loading	
Attachment	Direct (glued)	Indirect (e.g. pocket)	Sensing	
Orientation	Face up or down/portrait/landscape	Combined	Sensing	

Test Descriptions

Case	Test	Location	Vibration	Device	Attachment	Orientation	Coupling	Measure
1	1-4	Bridge	Operational	Moving	Backpack and pedestrian	Portrait	Indirect	Output
2	5-8	Bridge	Ambient	Stationary	Backpack and pedestrian	Portrait	Indirect	Output
3	9-12	Street	Operational	Moving	Backpack and pedestrian	Portrait	Indirect	System
4	13-16	Street	Ambient	Stationary	Backpack and pedestrian	Portrait	Indirect	System
5	17-20	Bridge	Ambient	Stationary	Backpack on ground	Portrait	Semi-direct	Óutput
6	21-24	Bridge	Ambient	Stationary	Phone on ground	Portrait	Direct	Output
7	25-28	Bridge	Ambient	Stationary	Pocket and pedestrian	Portrait	Indirect	Output
8	29-32	Street	Ambient	Stationary	Pocket and pedestrian	Portrait	Indirect	System

Field Tests

Pedestrian Measurements in Time and Frequency Domain

Results and Discussion

Walk-Induced Forces Identified by the Smartphone

NDT in Canada 2018 | June 19-21 | Halifax, NS

Results and Discussion

Isolating Biomechanical Effects from Standing Pedestrian Data

- Results and Discussion
- Biomechanical Effect Isolation

This presentation is adapted from:

Ozer, E., & Feng, M. Q. (2017). Biomechanically Influenced Mobile and Participatory Pedestrian Data for Bridge Monitoring. International Journal of Distributed Sensor Networks, 13(4), 1550147717705240.

Relevant References

- Feng, M., Fukuda, Y., Mizuta, M., & Ozer, E. (2015). Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones. *Sensors*, *15*(2), 2980–2998.
- Ozer, E., Feng, M. Q., & Feng, D. (2015). Citizen Sensors for SHM: Towards a Crowdsourcing Platform. *Sensors*, *15*(6), 14591–14614.
- Ozer, E., & Feng, M. Q. (2016). Synthesizing Spatiotemporally Sparse Smartphone Sensor Data for Bridge Modal Identification. *Smart Materials and Structures*, *25*(8), 085007.
- Ozer, E., & Feng, M. Q. (2017). Direction-Sensitive Smart Monitoring of Structures Using Heterogeneous Smartphone Sensor Data and Coordinate System Transformation. *Smart Materials and Structures, 26*(4), 045026.

Thank You.