Investigation on the suitability of laser-excited thermography to detect porosities in metallic components

Dipl.-Ing. Malte Mund NDTiC 2019, June 18-20, Edmonton, Alberta, Canada

Agenda

- Motivation
- Experiments
- Simulations
- Conclusions & Outlook

Classification of geometric imperfections

ISO 6520–1

ISO 6520-2

→ Fusion welding
→ Welding with pressure

Quality levels for imperfections

ISO 5817

- ightarrow Steel, nickel, titanium and their alloys
- ISO 10042
- ightarrow Aluminium and its alloys

ISO 17635: Connection of NDT and imperfections

- Surface inhomogeneities
- Internal irregularity

Inner defects

- Depends on the materials and thickness
- RT, UT

Typical inner defects

- Cavities
- Solid inclusions
- Lack of penetration

Source: ISO 5817

Quality levels for imperfections ISO 5817

- \rightarrow Steel, nickel, titanium and their alloys
- ISO 10042 \rightarrow Aluminium and its alloys

Parameters	
Working distance [mm]	- 25
Average output power [mm]	14
Scanning speed [mm/s]	10 - 100

- Large voids are easy to detect
- Smaller voids can not be visualized

 \rightarrow What are the limits?

Environmental Conditions

Laser	redEnergy G4 (SPI Lasers UK Ltd)
Scanner	Axialscan-20/-30 (Raylase AG)
Avg. Output Power [Watt]	20 - 70
Wavelength [nm]	1062

Varied Parameters		
Working distance [mm]	± 25	
Average Output Power [W]	20 - 70	
Scanning Speed [mm/s]	10 - 100	

IR-Camera:

- Variocam HD (Infratec GmbH)
- Resolution 320x240 Pixel
- Framerate 240 Hz

Parameters	
Working distance [mm]	- 25
Average output power [mm]	14 -70
Scanning speed [mm/s]	10

- Temperature increase for higher input power
- Ablation may occur if local energy input is too high
- Influence of spot diameter is negligible

Parameters	
Working distance [mm]	- 25
Average output power [mm]	14
Scanning speed [mm/s]	10 - 100

- Temperature increase for lower scanning speeds
- Lower influence than applied power
- "Blind Areas" if scanning speed is to high and framerate to low

Schnitt A-A

Parameter	Benennung
Length	1 = 50 mm
Thickness	t = 8 mm
Kantenlänge der Pore	a
Höhe der Pore	b
Tiefe der Pore	с

Exitation	Geometrical parameters
 Scanning speed 	 Depth
Power	Shape
 Spot diameter 	Size

Distance from Excitation Source [mm]

Parameters

Working distance [mm] Spot diameter [mm]	-25 1
Average output power [mm]	14/28/70
Scanning speed [mm/s]	10

- Temperature increase for higher input power
 Ablation may occur local
 - energy input is too high

Parameters	
Spot diameter [mm]	0.4
Average output power [mm]	7/14
Scanning speed [mm/s]	10

- Temperature increase for higher input power
- Ablation may occur local energy input is too high

Parameters			
Spot diameter [mm]	0.2		
Average output power [mm]	7		
Scanning speed [mm/s]	10/50		

- Nearly no effect on heating of scanning speed
- Ablation may occur local energy input (low scanning speeds)

	Sample	a [mm]	b [mm]	c [mm]
a.)	Reference	-	-	-
b.)	Size1	0.1	0.1	0.1
c)	Size2	0.2	0.2	0.2
d.)	Size 3	0.5	0.5	0.5
e.)	Size 4	1	1	1
f.)	Size 5	2	2	2
Depth	0.1 mm			
Size of porosity influence				

- Size of porosity influence temperature distribution significantly
- Large voids →higher temperatures

Experiments

- Power and scanning speed determine energy input
- Spot diameter (and scanning line length) can be neglected
- Upper boundaries for excitation \rightarrow Ablation
- Voids cannot be detected within the area the excitation

Simulations

- Simulations cover basic properties of the laser based excitation process
- Idealised voids can be detected
- Projected surface has the largest impact
- Laser parameters do not have a significant influence on detectability (except spot diameter)

Next steps

- Comparison of results to requirements of testing standards
- Experimental evaluation on real welds
- DoE for evaluation of experimental results

Thank you for your attention!

Contact: Dipl.-Ing. Malte Mund Technische Universität Braunschweig Institut für Füge- und Schweißtechnik Tel.: +49 531 391 95594 Mail: m.mund@tu-braunschweig.de